Master Thesis

Strong games played on random graphs

Did you ever play games such as Tic-Tac-Toe, its close relative n-in-a-row or Hex? Then you are already familiar with strong games. Strong games, as a specific type of Positional games, involve two players alternately claiming unoccupied elements of a set X, which is referred to as the board of the game. The two players are called Red (the first player) and Blue (the second player). The focus of both players is a given family $\mathcal{H} \subseteq 2^X$ of subsets of X, called the winning sets of the game. While playing, Red and Blue take turns in claiming previously unclaimed elements of X, exactly one element in each round, with Red starting the game. The winner of such a game (X, \mathcal{H}) is the first player to claim all elements of some winning set $F \in \mathcal{H}$. If this has not happened until the end of the game, i.e. until all elements of X have been claimed by either Red or Blue, the game is declared as a draw.

In a little more abstract sense, Positional games can also be played on the edge set of a graph $G = (V, E)$. In this case, $X = E$ and the winning sets are all the edge sets of subgraphs of G which possess some given graph property P, such as “being connected”, “containing a perfect matching”, “admitting a Hamilton cycle”, “being not k-colorable”, “containing an isomorphic copy of given graph H” etc.

In this thesis, we would be considering strong games played on the edge set of a n-vertex random graph $G \sim G(n, p)$, where each edge of the complete graph K_n is kept with probability p, independently at random. Recently, the study of strong games played on the edge set of a typical random graph was initiated in [1]. In particular, the perfect matching game played on $G \sim G(n, p)$, where $0 < p \leq 1$ is a constant, was analyzed and Red was provided with a winning strategy. The aim of this thesis would be to further analyze strong games played on the edge set of a random graph. Interesting approaches would be to find winning strategies for Red in other games (e.g. the Hamilton cycle game), or to analyze the perfect matching game for smaller, non-constant edge probabilities p.

Prerequisites: Basic knowledge of graph theory and discrete probability.

Contact Information:
Pascal Pfister, CAB G 17, ppfister@student.ethz.ch