Ramsey Properties of Random Hypergraphs: the 0-Statement for Cliques

Henning Thomas

ETH Zurich

joint work with
Luca Gugelmann, Yury Person, and Angelika Steger
Ramsey’s theorem

Theorem (Ramsey 1930)

Let $k \geq 2$, $r \geq 2$ be fixed. Then there exists a minimum integer $R(k, r)$ such that every r-edge-coloring of $K_{R(k,r)}$ contains a monochromatic K_k.

![Graph Illustration](image_url)
Ramsey’s theorem

Theorem (Ramsey 1930)

Let $k \geq 2$, $r \geq 2$ be fixed. Then there exists a minimum integer $R(k, r)$ such that every r-edge-coloring of $K_{R(k, r)}$ contains a monochromatic K_k.
Ramsey’s theorem

Theorem (Ramsey 1930)

Let $k \geq 2$, $r \geq 2$ be fixed. Then there exists a minimum integer $R(k, r)$ such that every r-edge-coloring of $K_{R(k, r)}$ contains a monochromatic K_k.

Notation

We write $G \rightarrow (F)^2_r$ if every r-edge-coloring of G contains a monochromatic copy of F.
Randomizations of Ramsey’s Theorem

Ramsey’s Theorem

Randomizations of Ramsey’s Theorem

Ramsey’s Theorem

(Łuczak, Ruciński, Voigt, ’92)
color $G(n, p)$ instead K_n
Randomizations of Ramsey’s Theorem

Ramsey’s Theorem

(Łuczak, Ruciński, Voigt, ’92)
color $G(n, p)$ instead K_n
solved completely by
Rödl, Ruciński ’93 &’95
Ramsey’s Theorem in $G(n, p)$

Let $m_2(F) = \max_{J \subseteq F} e(J) - 1 - v(J) - 2$.

The expected number of copies of F on a fixed edge is

$$\Theta(n v(F) - 2p e(F) - 1)$$

if $p \leq cn - v(F) - 2e(F) - 1$.

If $p \geq Cn - v(F) - 2e(F) - 1$, then

$$\Theta(n^2)$$
Ramsey’s Theorem in $G(n, p)$
Ramsey’s Theorem in $G(n, p)$

The expected number of copies of F on a fixed edge is

$$\Theta(n v(F) - 2 pe(F) - 1) =
\begin{cases}
	iny, e.g. < 0.001 & \text{if } p \leq cn - v(F) - 2 e(F) - 1 \\
\text{huge}, > 10^{10} & \text{if } p \geq Cn - v(F) - 2 e(F) - 1
\end{cases}$$

Let $m_2(F) = \max J \subseteq F e(J) - 1 v(J) - 2 = e(F) - 1 v(F) - 2$.

Henning Thomas (ETH Zurich)
Ramsey Properties of Random Hypergraphs
June 26, 2012 4 / 21
Ramsey’s Theorem in $G(n, p)$

- The expected number of copies of F on a fixed edge is

$$\Theta(n^{\nu(F)-2}p^{e(F)-1}) =$$
Ramsey’s Theorem in $G(n, p)$

- The expected number of copies of F on a fixed edge is

$$\Theta(n^{\nu(F) - 2} p^{e(F) - 1}) = \begin{cases} & \text{if } p \leq cn^{-\frac{\nu(F) - 2}{e(F) - 1}} \\ & \text{if } p \geq Cn^{-\frac{\nu(F) - 2}{e(F) - 1}} \end{cases}$$
Ramsey’s Theorem in $G(n, p)$

- The expected number of copies of F on a fixed edge is

$$\Theta(n^{\nu(F)-2}p^{e(F)-1}) = \begin{cases} \text{tiny, e.g. } < 0.001 & \text{if } p \leq cn^{-\frac{\nu(F)-2}{e(F)-1}} \\ \text{if } p \geq Cn^{-\frac{\nu(F)-2}{e(F)-1}} & \end{cases}$$
Ramsey’s Theorem in $G(n, p)$

The expected number of copies of F on a fixed edge is

$$\Theta\left(n^{\nu(F)-2} p^{e(F)-1}\right) = \begin{cases}
\text{tiny, e.g. } < 0.001 & \text{if } p \leq cn^{-\frac{\nu(F)-2}{e(F)-1}} \\
\text{huge, } > 10^{10^{10}} & \text{if } p \geq Cn^{-\frac{\nu(F)-2}{e(F)-1}}
\end{cases}$$
Ramsey’s Theorem in $G(n, p)$

- The expected number of copies of F on a fixed edge is

$$\Theta(n^{v(F)-2}p^{e(F)-1}) = \begin{cases}
\text{tiny, e.g. } < 0.001 & \text{if } p \leq cn^{-\frac{v(F)-2}{e(F)-1}} \\
\text{huge, } > 10^{10^{10}} & \text{if } p \geq Cn^{-\frac{v(F)-2}{e(F)-1}}
\end{cases}$$

- Let $m_2(F) = \max_{J \subseteq F} \frac{e(J)-1}{v(J)-2}$.

![Diagram of a hypergraph F embedded in a larger hypergraph $G(n,p)$]
Ramsey’s Theorem in $G(n, p)$

- The expected number of copies of F on a fixed edge is
 $$\Theta(n^{v(F) - 2} p^{e(F) - 1}) = \begin{cases}
 \text{tiny, e.g. } < 0.001 & \text{if } p \leq cn^{\frac{v(F) - 2}{e(F) - 1}} \\
 \text{huge, } > 10^{10^{10}} & \text{if } p \geq Cn^{\frac{v(F) - 2}{e(F) - 1}}
 \end{cases}$$

- Let $m_2(F) = \max_{J \subseteq F} \frac{e(J) - 1}{v(J) - 2}$.
Ramsey’s Theorem in $G(n, p)$

- The expected number of copies of F on a fixed edge is

$$\Theta(n^{v(F)-2} p^{e(F)-1}) = \begin{cases} \text{tiny, e.g. } < 0.001 & \text{if } p \leq cn^{\frac{v(F)-2}{e(F)-1}} \\ \text{huge, } > 10^{10^{10}} & \text{if } p \geq Cn^{\frac{v(F)-2}{e(F)-1}} \end{cases}$$

- Let $m_2(F) = \max_{J \subseteq F} \frac{e(J)-1}{v(J)-2}$.

Henning Thomas (ETH Zurich)
Ramsey Properties of Random Hypergraphs
June 26, 2012 4 / 21
Ramsey’s Theorem in $G(n, p)$

- The expected number of copies of F on a fixed edge is

$$\Theta(n^{\nu(F)-2} p^{e(F)-1}) = \begin{cases} \text{tiny, e.g. } < 0.001 & \text{if } p \leq cn^{-\frac{\nu(F)-2}{e(F)-1}} \\ \text{huge, } > 10^{10^{10}} & \text{if } p \geq Cn^{-\frac{\nu(F)-2}{e(F)-1}} \end{cases}$$

- Let $m_2(F) = \max_{J \subseteq F} \frac{e(J)-1}{\nu(J)-2}$ 2-balanced $= \frac{e(F)-1}{\nu(F)-2}$.

\[F \quad G(n,p) \]
The Result of Rödl and Ruciński

Let $r \geq 2$ and F be a fixed graph that is not a forest of stars and paths of length 3. Then there exist positive constants $c = c(F, r)$ and $C = C(F, r)$ such that

$$\lim_{n \to \infty} \Pr[\mathcal{G}(n, p) \to (F)^2] = \begin{cases} 1 & \text{if } p \geq \frac{c}{m^2(F)}n - 1 \\ 0 & \text{if } p \leq \frac{c}{m^2(F)}n - 1 \end{cases}$$

For every star S_k the threshold is at

$$p \approx \frac{n - 2}{k^2 - 1} \ll \frac{1}{m^2(S_k)}.$$
The Result of Rödl and Ruciński

Theorem (Rödl, Ruciński ’93 & ’95)

Let \(r \geq 2 \) and \(F \) be a **fixed graph** that is not a forest of stars and paths of length 3. Then there exist positive constants \(c = c(F, r) \), and \(C = C(F, r) \) such that

\[
\lim_{n \to \infty} \Pr[G(n, p) \rightarrow (F)_{r}^{2}] = \begin{cases}
1 & \text{if } p \geq Cn^{-1/m_2(F)} \\
0 & \text{if } p \leq cn^{-1/m_2(F)}
\end{cases}
\]
The Result of Rödl and Ruciński

Theorem (Rödl, Ruciński '93 & '95)

Let \(r \geq 2 \) and \(F \) be a fixed graph that is not a forest of stars and paths of length 3. Then there exist positive constants \(c = c(F, r) \), and \(C = C(F, r) \) such that

\[
\lim_{n \to \infty} \Pr[G(n, p) \to (F)^2_r] = \begin{cases}
1 & \text{if } p \geq Cn^{-1/m_2(F)} \\
0 & \text{if } p \leq cn^{-1/m_2(F)}
\end{cases}
\]

For every star \(S_k \) the threshold is at \(p \preceq n^{-\frac{2k}{2k-1}} \ll n^{-1/m_2(S_k)} \).
The Result of Rödl and Ruciński

Theorem (Rödl, Ruciński ’93 & ’95)

Let \(r \geq 2 \) and \(F \) be a fixed graph that is not a forest of stars and paths of length 3. Then there exist positive constants \(c = c(F, r) \), and \(C = C(F, r) \) such that

\[
\lim_{n \to \infty} \Pr[G(n, p) \to (F)^2_r] = \begin{cases}
1 & \text{if } p \geq Cn^{-1/m_2(F)} \\
0 & \text{if } p \leq cn^{-1/m_2(F)}
\end{cases}
\]

For every star \(S_k \) the threshold is at \(p \asymp n^{-\frac{2k}{2k-1}} \ll n^{-1/m_2(S_k)} \).
The Result of Rödl and Ruciński

Theorem (Rödl, Ruciński ’93 & ’95)

Let \(r \geq 2 \) and \(F \) be a fixed graph that is not a forest of stars and paths of length 3. Then there exist positive constants \(c = c(F, r) \), and \(C = C(F, r) \) such that

\[
\lim_{n \to \infty} \Pr [G(n, p) \to (F)^2_r] = \begin{cases}
1 & \text{if } p \geq Cn^{-1/m_2(F)} \\
0 & \text{if } p \leq cn^{-1/m_2(F)}
\end{cases}
\]

For every star \(S_k \) the threshold is at \(p \asymp n^{-\frac{2k}{2k-1}} \ll n^{-1/m_2(S_k)} \).

\[
m_2(P_3) = 1
\]
The Result of Rödl and Ruciński

Theorem (Rödl, Ruciński ’93 & ’95)

Let \(r \geq 2 \) and \(F \) be a fixed graph that is not a forest of stars and paths of length 3. Then there exist positive constants \(c = c(F, r) \), and \(C = C(F, r) \) such that

\[
\lim_{n \to \infty} \Pr \left[G(n, p) \to (F)_r^2 \right] = \begin{cases}
1 & \text{if } p \geq Cn^{-1/m_2(F)} \\
0 & \text{if } p \leq cn^{-1/m_2(F)}
\end{cases}
\]

For every star \(S_k \) the threshold is at \(p \approx n^{-\frac{2k}{2k-1}} \ll n^{-1/m_2(S_k)} \).

\[m_2(P_3) = 1 \]

\[S \]

Henning Thomas (ETH Zurich) Ramsey Properties of Random Hypergraphs June 26, 2012
The Result of Rödl and Ruciński

Theorem (Rödl, Ruciński ’93 & ’95)

Let \(r \geq 2 \) and \(F \) be a fixed graph that is not a forest of stars and paths of length 3. Then there exist positive constants \(c = c(F, r) \), and \(C = C(F, r) \) such that

\[
\lim_{n \to \infty} \Pr\left[G(n, p) \rightarrow (F)_{r}^{2} \right] = \begin{cases}
1 & \text{if } p \geq Cn^{−1/m_2(F)} \\
0 & \text{if } p \leq cn^{−1/m_2(F)}
\end{cases}
\]

For every star \(S_k \) the threshold is at \(p \asymp n^{-\frac{2k}{2k-1}} \ll n^{-1/m_2(S_k)} \).

\[
m_2(P_3) = 1 \quad \text{and} \quad m(S) = 1
\]

where \(m(F) = \max_{J \subseteq F} \frac{e(J)}{v(J)} \).
The Result of Rödl and Ruciński

Theorem (Rödl, Ruciński ’93 & ’95)

Let \(r \geq 2 \) and \(F \) be a fixed graph that is not a forest of stars and paths of length 3. Then there exist positive constants \(c = c(F, r) \), and \(C = C(F, r) \) such that

\[
\lim_{n \to \infty} \Pr[G(n, p) \to (F)^2_r] = \begin{cases}
1 & \text{if } p \geq Cn^{-1/m_2(F)} \\
0 & \text{if } p \leq cn^{-1/m_2(F)}
\end{cases}
\]

For every star \(S_k \) the threshold is at \(p \ll n^{-\frac{2k}{2k-1}} \ll n^{-1/m_2(S_k)} \).

\[m_2(P_3) = 1 \quad m(S) = 1 \]

where \(m(F) = \max_{J \subseteq F} \frac{e(J)}{v(J)} \).
The Result of Rödl and Ruciński

Theorem (Rödl, Ruciński ’93 & ’95)

Let $r \geq 2$ and F be a fixed graph that is not a forest of stars and paths of length 3. Then there exist positive constants $c = c(F, r)$, and $C = C(F, r)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to (F)^2_r] = \begin{cases} 1 & \text{if } p \geq Cn^{-1/m_2(F)} \\ 0 & \text{if } p \leq cn^{-1/m_2(F)} \end{cases}$$

For every star S_k the threshold is at $p \approx n^{-\frac{2k}{2k-1}} \ll n^{-1/m_2(S_k)}$.

where $m(F) = \max_{J \subseteq F} \frac{e(J)}{v(J)}$.
The Result of Rödl and Ruciński

Theorem (Rödl, Ruciński ’93 & ’95)

Let \(r \geq 2 \) and \(F \) be a fixed graph that is not a forest of stars and paths of length 3. Then there exist positive constants \(c = c(F, r) \), and \(C = C(F, r) \) such that

\[
\lim_{n \to \infty} \Pr[G(n, p) \rightarrow (F)_r^2] = \begin{cases}
1 & \text{if } p \geq Cn^{-1/m_2(F)} \\
0 & \text{if } p \leq cn^{-1/m_2(F)}
\end{cases}
\]

For every star \(S_k \) the threshold is at \(p \asymp n^{-\frac{2k}{2k-1}} \ll n^{-1/m_2(S_k)} \).

\[
m_2(P_3) = 1 \\
m(S) = 1
\]

where \(m(F) = \max_{J \subseteq F} \frac{e(J)}{v(J)} \).
Related Work

- Sharp Thresholds
 - Friedgut, Krivelevich ('00)
 - Friedgut, Rödl, Ruciński, Tetali ('06)

- Asymmetric Ramsey Properties
 - Kohayakawa, Kreuter ('97)
 - Marciniszyn, Spöhel, Skokan, Steger ('09)

- Online Ramsey Games
 - Friedgut, Kohayakawa, Rödl, Ruciński, Tetali ('03)
 - Marciniszyn, Spöhel, Steger '09
 - Marciniszyn, Mitsche, Stojakovic ('07)

- Ramsey Properties of Random Hypergraphs
 - later more...
Related Work

Sharp Thresholds

- Friedgut, Krivelevich ('00) trees
- Friedgut, Rödl, Ruciński, Tetali ('06) triangle
Related Work

Sharp Thresholds
- Friedgut, Krivelevich ('00) trees
- Friedgut, Rödl, Ruciński, Tetali ('06) triangle

Asymmetric Ramsey Properties
- Kohayakawa, Kreuter ('97) cycles
- Marciniszyn, Spöhel, Skokan, Steger ('09) cliques
Related Work

Sharp Thresholds
- Friedgut, Krivelevich ('00) trees
- Friedgut, Rödl, Ruciński, Tetali ('06) triangle

Asymmetric Ramsey Properties
- Kohayakawa, Kreuter ('97) cycles
- Marciniszyn, Spöhel, Skokan, Steger ('09) cliques

Online Ramsey Games
- Friedgut, Kohayakawa, Rödl, Ruciński, Tetali ('03) triangle
- Marciniszyn, Spöhel, Steger '09 cliques and cycles
- Marciniszyn, Mitsche, Stojakovic ('07) balanced, cycles
- Spöhel, Prakash, T. ('09) balanced, large class of graphs
Related Work

Sharp Thresholds
- Friedgut, Krivelevich (’00) trees
- Friedgut, Rödl, Ruciński, Tetali (’06) triangle

Asymmetric Ramsey Properties
- Kohayakawa, Kreuter (’97) cycles
- Marciniszyn, Spöhel, Skokan, Steger (’09) cliques

Online Ramsey Games
- Friedgut, Kohayakawa, Rödl, Ruciński, Tetali (’03) triangle
- Marciniszyn, Spöhel, Steger ’09 cliques and cycles
- Marciniszyn, Mitsche, Stojakovic (’07) balanced, cycles
- Spöhel, Prakash, T. (’09) balanced, large class of graphs

Ramsey Properties of Random Hypergraphs
- later more ...
(Łuczak, Ruciński, Voigt, ’92)
color $G(n, p)$ instead K_n
solved completely by
Rödl, Ruciński ’93 & ’95
Randomizations of Ramsey’s Theorem

Ramsey’s Theorem

(by Łuczak, Ruciński, Voigt, ’92)
color \(G(n, p)\) instead \(K_n\)
solved completely by Rödl, Ruciński ’93 & ’95

(by Allen et al. ’11)
random restriction set \(R_F(n, q)\): flip \(q\)-biased coin for every copy of \(F\) in \(K_n\)
Randomizations of Ramsey’s Theorem

Ramsey’s Theorem

Łuczak, Ruciński, Voigt, ’92

color $G(n, p)$ instead K_n
solved completely by Rödl, Ruciński ’93 & ’95

(by Allen et al. ’11)

random restriction set $\mathcal{R}_F(n, q)$: flip q-biased coin for every copy of F in K_n

solved by Gugelmann, Person, Steger, T. ’12
Combining both Randomizations

The expected number of bad copies of F on a fixed edge is $\Theta(n^{v(F)} - 2p^{e(F)} - 1q)$.

Henning Thomas (ETH Zurich)
Ramsey Properties of Random Hypergraphs
June 26, 2012 8 / 21
Combining both Randomizations

The expected number of bad copies of F on a fixed edge is $\Theta(n^{-v(F)} - 2p + 1q)$.

Henning Thomas (ETH Zurich)
Ramsey Properties of Random Hypergraphs
June 26, 2012 8 / 21
Combining both Randomizations

The expected number of bad copies of F on a fixed edge is $\Theta(n^v(F) - 2p^e(F) - 1q)$.

Henning Thomas (ETH Zurich)
Ramsey Properties of Random Hypergraphs
June 26, 2012 8 / 21
Combining both Randomizations

The expected number of bad copies of F on a fixed edge is

$$\Theta(n^{v(F)-2} p^{e(F)-1} q)$$.
Combining both Randomizations

Theorem (Gugelmann, Person, Steger, T. ’12)

Let $r \geq 2$ and F be a strictly 2-balanced graph. Then there exist constants $c = c(F, r) > 0$ and $C = C(F, r) > 0$ such that

$$\lim_{n \to \infty} \Pr\left[G(n, p) \xrightarrow{\mathcal{R}_F(n,q)} (F)^2_r \right] = \begin{cases} 0, & \text{if } p \leq c n^{v(F)-2} p^{e(F)-1} q \\ 1, & \text{if } p \geq C n^{v(F)-2} p^{e(F)-1} q \end{cases}.$$
Combining both Randomizations

Theorem (Gugelmann, Person, Steger, T. ’12)

Let $r \geq 2$ and F be a strictly 2-balanced graph. Then there exist constants $c = c(F, r) > 0$ and $C = C(F, r) > 0$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \xrightarrow{\mathcal{R}_F(n, q)} (F)_r^2] = \begin{cases} 0, & \text{if } p \leq c n^{v(F)-2} p^{e(F)-1} q \\ 1, & \text{if } p \geq C n^{v(F)-2} p^{e(F)-1} q \end{cases}. $$

Proof. Uses a couple of new ideas . . . later more . . .
$H^{(k)}(n, p)$ denotes a **binomial random k-uniform hypergraph**: each of the possible $\binom{n}{k}$ hyperedges appears ind. with prob. p.

The expected number of copies of F on a fixed hyperedge is $\Theta(n v(F) - k p e(F) - 1)$. Is the threshold at $p \approx n^{-1/m_k(F)}$, where $m_k(F) = \max_{J \subseteq F} e(J) - 1 v(J) - k$?
$H^{(k)}(n, p)$ denotes a **binomial random k-uniform hypergraph**: each of the possible $\binom{n}{k}$ hyperedges appears ind. with prob. p.

The expected number of copies of F on a fixed hyperedge is $\Theta(n^{v(F)} - k^{e(F)} - 1)$.

Is the threshold at $p \approx n^{-1/m_{k}(F)}$, where $m_{k}(F) = \max_{J \subseteq F} e(J) - 1 - v(J) - k$?
$H^{(k)}(n, p)$ denotes a binominal random k-uniform hypergraph: each of the possible $\binom{n}{k}$ hyperedges appears ind. with prob. p.

Is the threshold at $p \approx \frac{n - 1}{m_k(F)}$, where $m_k(F) = \max_{J \subseteq F} e(J) - 1 - v(J) - k$?
\(H^{(k)}(n, p) \) denotes a binomial random \(k \)-uniform hypergraph: each of the possible \(\binom{n}{k} \) hyperedges appears ind. with prob. \(p \).
Ramsey in Random Hypergraphs

- $H^{(k)}(n, p)$ denotes a binomial random k-uniform hypergraph: each of the possible $\binom{n}{k}$ hyperedges appears ind. with prob. p.
- The expected number of copies of F on a fixed hyperedge is

$$\Theta(n^{v(F)-k} p^{e(F)-1})$$
$H^{(k)}(n, p)$ denotes a binomial random k-uniform hypergraph: each of the possible $\binom{n}{k}$ hyperedges appears ind. with prob. p.

The expected number of copies of F on a fixed hyperedge is

$$\Theta(n^{v(F)-k} p^{e(F)-1})$$

Is the threshold at

$$p \asymp n^{-1/m_k(F)}$$

where $m_k(F) = \max_{J \subseteq F} \frac{e(J) - 1}{v(J) - k}$?
Rödl, Ruciński ('98) confirmed the 1-statement for $F = K_4^{(3)}$.

Rödl, Ruciński, Schacht ('07) confirmed the 1-statement for k-partite, k-uniform hypergraphs.

Friedgut, Rödl, Schacht ('10) and, independently, Conlon, Gowers ('12+) confirmed the 1-statement for every k-uniform hypergraph.

A corresponding 0-statement is still open.
Rödl, Ruciński ('98) confirmed the 1-statement for $F = K_4^{(3)}$, and conjectured that the 1-statement holds for every k-uniform hypergraph, and
Rödl, Ruciński ('98) confirmed the 1-statement for $F = K_4^{(3)}$, conjectured that the 1-statement holds for every k-uniform hypergraph, and noted that they believe that a proof for the corresponding 0-statement would follow the lines of [RR93].
Rödl, Ruciński (’98) confirmed the 1-statement for $F = K_4^{(3)}$, conjectured that the 1-statement holds for every k-uniform hypergraph, and noted that they believe that a proof for the corresponding 0-statement would follow the lines of [RR93].

Rödl, Ruciński, Schacht (’07) confirmed the 1-statement for k-partite, k-uniform hypergraphs.
Rödl, Ruciński ('98) confirmed the 1-statement for $F = K_4^{(3)}$,

... conjectured that the 1-statement holds for every k-uniform hypergraph, and

... noted that they believe that a proof for the corresponding 0-statement would follow the lines of [RR93].

Rödl, Ruciński, Schacht ('07) confirmed the 1-statement for k-partite, k-uniform hypergraphs.

Friedgut, Rödl, Schacht ('10) and, independently, Conlon, Gowers ('12+) confirmed the 1-statement for every k-uniform hypergraph.
Rödl, Ruciński ('98) confirmed the 1-statement for $F = K_4^{(3)}$, ... conjectured that the 1-statement holds for every k-uniform hypergraph, and

... noted that they believe that a proof for the corresponding 0-statement would follow the lines of [RR93].

Rödl, Ruciński, Schacht ('07) confirmed the 1-statement for k-partite, k-uniform hypergraphs.

Friedgut, Rödl, Schacht ('10) and, independently, Conlon, Gowers ('12+) confirmed the 1-statement for every k-uniform hypergraph.

A corresponding 0-statement is still open.
Is $p \asymp n^{-1/m_k(F)}$ the right threshold?
Is $p \asymp n^{-1/m_k(F)}$ the right threshold?

Consider $F = P_3^{(3)}$.

![Diagram of a hypergraph]
Is $p \preceq n^{-1/m_k(F)}$ the right threshold?

- Consider $F = P_3^{(3)}$. We have $m_k(F) = \frac{3-1}{5-3} = 1$.

\begin{center}
\includegraphics[width=0.3\textwidth]{hypergraph.png}
\end{center}
Is $p \approx n^{-1/m_k(F)}$ the right threshold?

- Consider $F = P_3^{(3)}$. We have $m_k(F) = \frac{3-1}{5-3} = 1$.

[Diagram of a hypergraph]
Is $p \gtrapprox n^{-1/m_k(F)}$ the right threshold?

- Consider $F = P_3^{(3)}$. We have $m_k(F) = \frac{3^{-1}}{5-3} = 1$.

![Hypergraph diagram](image)
Is $p \approx n^{-1/m_k(F)}$ the right threshold?

- Consider $F = P_3^{(3)}$. We have $m_k(F) = \frac{3-1}{5-3} = 1$.

- Consider the following hypergraph H.

Henning Thomas (ETH Zurich) Ramsey Properties of Random Hypergraphs June 26, 2012 12 / 21
Is $p \asymp n^{-1/m_k(F)}$ the right threshold?

- Consider $F = P_3^{(3)}$. We have $m_k(F) = \frac{3-1}{5-3} = 1$.

- Consider the following hypergraph H. We have $m(H) = \frac{10}{11} < 1$.
Is $p \approx n^{-1/m_k(F)}$ the right threshold?

- Consider $F = P_3^{(3)}$. We have $m_k(F) = \frac{3-1}{5-3} = 1$.

- Consider the following hypergraph H. We have $m(H) = \frac{10}{11} < 1$.

- H appears in $H^{(k)}(n, p)$ if $p = cn^{-1/m_k(F)} = cn^{-1}$.
Is $p \asymp n^{-1/m_k(F)}$ the right threshold?

- Consider $F = P_3^{(3)}$. We have $m_k(F) = \frac{3-1}{5-3} = 1$.

- Consider the following hypergraph H. We have $m(H) = \frac{10}{11} < 1$.

- H even appears in $H^{(k)}(n, p)$ if $p = cn^{-1/m_k(F)-0.1} = cn^{-1.1}$.

Is $p \asymp n^{-1/m_k(F)}$ the right threshold?

- Consider the following 4-uniform hypergraph F.
Is $p \propto n^{-1/m_k(F)}$ the right threshold?

Consider the following 4-uniform hypergraph F.

We have $m_4(F) = \frac{3-1}{5-4} = 2$.
Is \(p \asymp n^{-1/m_k(F)} \) the right threshold?

- Consider the following 4-uniform hypergraph \(F \).

We have \(m_4(F) = \frac{3-1}{5-4} = 2 \).
Is \(p \ll n^{-1/m_k(F)} \) the right threshold?

- Consider the following 4-uniform hypergraph \(F \).

 ![Graph 1]

 We have \(m_4(F) = \frac{3-1}{5-4} = 2 \).

- Consider the following hypergraph \(H \).

 ![Graph 2]

 \(K_6 \)
Is $p \sim n^{-1/m_k(F)}$ the right threshold?

- Consider the following 4-uniform hypergraph F.

 ![Hypergraph F](image)

 We have $m_4(F) = \frac{3-1}{5-4} = 2$.

- Consider the following hypergraph H.

 ![Hypergraph H](image)

 We have $m(H) = \frac{15}{8} < 2$.

In general, \(p \sim n^{-1/m_k(F)} \) is not the right threshold, but
In general, $p \asymp n^{-1/m_k(F)}$ is not the right threshold, but

Theorem (Gugelmann, Person, Steger, T. ’12)

Let $k \geq 3$, $\ell > k$ and let $F = K_{\ell}^{(k)}$. Then there exists a constant $c = c(k, \ell) > 0$ such that

$$\lim_{n \to \infty} \Pr[H^{(k)}(n, p) \to (F)^2] = 0 \quad \text{if } p \leq cn^{-1/m_k(F)}.$$
In general, \(p \asymp n^{-1/m_k(F)} \) is **not** the right threshold, but

Theorem (Gugelmann, Person, Steger, T. ’12)

Let \(k \geq 3, \ell > k \) and let \(F = K^{(k)}_{\ell} \). Then there exists a constant \(c = c(k, \ell) > 0 \) such that

\[
\lim_{n \to \infty} \Pr[H^{(k)}(n, p) \to (F)_2^k] = 0 \quad \text{if} \quad p \leq cn^{-1/m_k(F)}.
\]

Proof.

- Fix \(k \geq 3 \) and \(\ell > k \) and let \(F = K^{(k)}_{\ell} \).
In general, $p \asymp n^{-1/m_k(F)}$ is not the right threshold, but

Theorem (Gugelmann, Person, Steger, T. ’12)

Let $k \geq 3$, $\ell > k$ and let $F = K_{\ell}^{(k)}$. Then there exists a constant $c = c(k, \ell) > 0$ such that

$$\lim_{n \to \infty} \Pr[H^{(k)}(n, p) \to (F)_2^k] = 0 \quad \text{if } p \leq cn^{-1/m_k(F)}.$$

Proof.

- Fix $k \geq 3$ and $\ell > k$ and let $F = K_{\ell}^{(k)}$.
- Assume that $p \leq cn^{-1/m_k(F)}$.
In general, $p \asymp n^{-1/m_k(F)}$ is not the right threshold, but

Theorem (Gugelmann, Person, Steger, T. ’12)

Let $k \geq 3$, $\ell > k$ and let $F = K_{\ell}^{(k)}$. Then there exists a constant $c = c(k, \ell) > 0$ such that

$$\lim_{n \to \infty} \Pr[H^{(k)}(n, p) \to (F)^{k}_2] = 0 \quad \text{if } p \leq cn^{-1/m_k(F)}.$$

Proof.

- Fix $k \geq 3$ and $\ell > k$ and let $F = K_{\ell}^{(k)}$.
- Assume that $p \leq cn^{-1/m_k(F)}$.
- We need to show that we can a.a.s. color the hyperedges of $H^{(k)}(n, p)$ with 2 colors without a monochromatic copy of F.
We call a hyperedge of a hypergraph H closed (in H) if it is contained in at least 2 otherwise edge-disjoint copies of F in H. We call a hypergraph H closed if all its edges are closed in H.

Idea. Successively remove open edges of H ($k(n,p)$). We are left with a collection of closed subhypergraphs which remain to be colored.
We call a hyperedge of a hypergraph H **closed** (in H) if it is contained in at least 2 otherwise edge-disjoint copies of F in H. It is **open** (in H) otherwise.

We call a hypergraph H **closed** if all its edges are closed in H.

Idea. Successively remove open edges of H ($k(n, p)$). We are left with a collection of closed subhypergraphs which remain to be colored.
Open and Closed Edges

We call a hyperedgde of a hypergraph H

- **closed** (in H) if it is contained in **at least 2** otherwise **edge-disjoint** copies of F in H.

![Diagram showing closed hyperedges](image)
We call a hyperedge of a hypergraph H

- **closed** (in H) if it is contained in at least 2 otherwise edge-disjoint copies of F in H.

![Diagram of a hyperedge being contained within another hyperedge with a checkmark indicating a closed edge.](image)
We call a hyperedge of a hypergraph H
- **closed** (in H) if it is contained in at least 2 otherwise edge-disjoint copies of F in H.
- **open** (in H) otherwise.

Idea.
Successively remove open edges of H (k (n, p)).
We are left with a collection of closed subhypergraphs which remain to be colored.
Open and Closed Edges

We call a hyperedge of a hypergraph H

- **closed** (in H) if it is contained in at least 2 otherwise edge-disjoint copies of F in H.
- **open** (in H) otherwise.

We call a hypergraph H **closed** if all its edges are closed in H.
Open and Closed Edges

We call a hyperedge of a hypergraph H

- **closed** (in H) if it is contained in at least 2 otherwise edge-disjoint copies of F in H.
- **open** (in H) otherwise.

We call a hypergraph H **closed** if all its edges are closed in H.

Idea. Successively remove open edges of $H^{(k)}(n, p)$.

![Diagram showing a hypergraph with a closed edge highlighted]
Open and Closed Edges

We call a hyperedge of a hypergraph H
- **closed** (in H) if it is contained in at least 2 otherwise edge-disjoint copies of F in H.
- **open** (in H) otherwise.

We call a hypergraph H **closed** if all its edges are closed in H.

Idea. Successively remove open edges of $H^{(k)}(n, p)$.

We are left with a collection of **closed subhypergraphs** which remain to be colored.
Open and Closed Edges

We call a hyperedge of a hypergraph H

- **closed** (in H) if it is contained in at least 2 otherwise edge-disjoint copies of F in H.
- **open** (in H) otherwise.

We call a hypergraph H **closed** if all its edges are closed in H.

Idea. Successively remove open edges of $H^{(k)}(n, p)$.

We are left with a collection of closed subhypergraphs which remain to be colored.
Proof Outline

There exists a constant $L > 0$ such that a.a.s. every closed subhypergraph has size at most L.

(D) For every closed hypergraph H with $m(H) \leq mk(F)$ we have $H \not \rightarrow (F)_k^2$.

Note that (P) implies by small subgraphs that a.a.s. every constant size closed subhypergraph H in $H(k)(n,p)$ satisfies $m(H) \leq mk(F)$.

Henning Thomas (ETH Zurich) Ramsey Properties of Random Hypergraphs June 26, 2012 16 / 21
(P) There exists a constant $L > 0$ such that a.a.s. every closed subhypergraph has size at most L.

(D) For every closed hypergraph H with $m(H) \leq m_k(F)$ we have $H \not\rightarrow (F)^k_2$.

Note that (P) implies by small subgraphs that a.a.s. every constant size closed subhypergraph H in $H(k)(n,p)$ satisfies $m(H) \leq m_k(F)$.

Henning Thomas (ETH Zurich)
Ramsey Properties of Random Hypergraphs
June 26, 2012 16 / 21
(P) There exists a constant $L > 0$ such that a.a.s. every closed subhypergraph has size at most L.

(D) For every closed hypergraph H with $m(H) \leq m_k(F)$ we have $H \not\rightarrow (F)^k_2$.

Note that (P) implies by small subgraphs that a.a.s. every constant size closed subhypergraph H in $H^{(k)}(n, p)$ satisfies $m(H) \leq m_k(F)$.
Proof Outline

P There exists a constant \(L > 0 \) such that a.a.s. every closed subhypergraph has size at most \(L \). \(\text{(works if} \ \delta(F) \geq 2\text{)} \)

D For every closed hypergraph \(H \) with \(m(H) \leq m_k(F) \) we have \(H \nrightarrow (F)_2^k \).

Note that **P** implies by small subgraphs that a.a.s. every constant size closed subhypergraph \(H \) in \(H^{(k)}(n, p) \) satisfies \(m(H) \leq m_k(F) \).
Proof Outline

(P) There exists a constant \(L > 0 \) such that a.a.s. every closed subhypergraph has size at most \(L \). \((\text{works if } \delta(F) \geq 2)\)

(D) For every closed hypergraph \(H \) with \(m(H) \leq m_k(F) \) we have \(H \not\rightarrow (F)_2^k \). \((\text{works for a large class of graphs})\)

Note that (P) implies by small subgraphs that a.a.s. every constant size closed subhypergraph \(H \) in \(H^{(k)}(n,p) \) satisfies \(m(H) \leq m_k(F) \).
Building closed subhypergraphs
(P) Building closed subhypergraphs
(P) Building closed subhypergraphs
Building closed subhypergraphs
(P) Building closed subhypergraphs
Structure becomes large and unlikely to appear
Building closed subhypergraphs
Building closed subhypergraphs
Building closed subhypergraphs
Building closed subhypergraphs
(P) Building closed subhypergraphs
Building closed subhypergraphs
Structure becomes dense and unlikely to appear
(D) Special Case: Cliques

Need to show: we can color the edges of every hypergraph H with $m(H) \leq m_k(K_k \ell)$ without a monochromatic copy of $K_k \ell$.

Implies for every $H' \subseteq H$ that $\delta(H') \leq km_k(K_k \ell)$.

Color H iteratively.

Suffices to avoid a $K_{k-1} \ell - 1$ in the link of v.

$km_k(K_k \ell)$ hyperedges do not enforce a monochromatic $K_{k-1} \ell - 1$.
(D) Special Case: Cliques

- **Need to show**: we can color the edges of every hypergraph H with $m(H) \leq m_k(K^{(k)}_\ell)$ without a monochromatic copy of $K^{(k)}_\ell$.
(D) Special Case: Cliques

- **Need to show:** we can color the edges of every hypergraph H with $m(H) \leq m_k(K^{(k)}_{\ell})$ without a monochromatic copy of $K^{(k)}_{\ell}$.
- **... implies for every** $H' \subseteq H$ that $\delta(H') \leq km_k(K^{(k)}_{\ell})$.
(D) Special Case: Cliques

- **Need to show:** we can color the edges of every hypergraph H with $m(H) \leq m_k(K^{(k)}_\ell)$ without a monochromatic copy of $K^{(k)}_\ell$.
- \ldots implies for every $H' \subseteq H$ that $\delta(H') \leq km_k(K^{(k)}_\ell)$.

\[\leq km_k(K^{(k)}_\ell) \]
(D) Special Case: Cliques

- **Need to show**: we can color the edges of every hypergraph H with $m(H) \leq m_k(K^{(k)}_{\ell})$ without a monochromatic copy of $K^{(k)}_{\ell}$.
- ... implies for every $H' \subseteq H$ that $\delta(H') \leq km_k(K^{(k)}_{\ell})$.

\[\leq km_k(K^{(k)}_{\ell}) \]
(D) Special Case: Cliques

- Need to show: we can color the edges of every hypergraph H with $m(H) \leq m_k(K^{(k)}_{\ell})$ without a monochromatic copy of $K^{(k)}_{\ell}$.
- ... implies for every $H' \subseteq H$ that $\delta(H') \leq km_k(K^{(k)}_{\ell})$.

\[\leq km_k(K^{(k)}_{\ell}) \]
(D) Special Case: Cliques

- **Need to show:** we can color the edges of every hypergraph H with $m(H) \leq m_k(K^{(k)}_\ell)$ without a monochromatic copy of $K^{(k)}_\ell$.
- ... implies for every $H' \subseteq H$ that $\delta(H') \leq km_k(K^{(k)}_\ell)$.

\[\bullet \bullet \bullet \ldots \bullet \bullet \]

- Color H iteratively
(D) Special Case: Cliques

- Need to show: we can color the edges of every hypergraph H with $m(H) \leq m_k(K^{(k)}_\ell)$ without a monochromatic copy of $K^{(k)}_\ell$.
- ... implies for every $H' \subseteq H$ that $\delta(H') \leq km_k(K^{(k)}_\ell)$.
- Color H iteratively

Henning Thomas (ETH Zurich) Ramsey Properties of Random Hypergraphs June 26, 2012 19 / 21
(D) Special Case: Cliques

- **Need to show:** we can color the edges of every hypergraph H with $m(H) \leq m_k(K^{(k)}_{\ell})$ without a monochromatic copy of $K^{(k)}_{\ell}$.
- ... implies for every $H' \subseteq H$ that $\delta(H') \leq km_k(K^{(k)}_{\ell})$.
- Color H iteratively

Henning Thomas (ETH Zurich)

Ramsey Properties of Random Hypergraphs

June 26, 2012 19 / 21
(D) Special Case: Cliques

- **Need to show:** we can color the edges of every hypergraph H with $m(H) \leq m_k(K^{(k)}_\ell)$ without a monochromatic copy of $K^{(k)}_\ell$.
- **... implies for every $H' \subseteq H$ that $\delta(H') \leq km_k(K^{(k)}_\ell)$.

 ![Diagram](image)

- **Color H iteratively**

 ![Diagram](image)

- **Suffices to avoid a $K^{(k-1)}_{\ell-1}$ in the link of v**
(D) Special Case: Cliques

- **Need to show**: we can color the edges of every hypergraph H with $m(H) \leq m_k(K_{\ell}^{(k)})$ without a monochromatic copy of $K_{\ell}^{(k)}$.
- ...implies for every $H' \subseteq H$ that $\delta(H') \leq km_{k}(K_{\ell}^{(k)})$.

![Diagram showing a hypergraph]

- Color H iteratively

 ![Diagram showing a hypergraph]

- Suffices to avoid a $K_{\ell-1}^{(k-1)}$ in the link of v
- $km_{k}(K_{\ell}^{(k)})$ hyperedges do not enforce a monochromatic $K_{\ell-1}^{(k-1)}$.
Theorem (Gugelmann, Person, Steger, T. '12)

Let \(k \geq 3 \) and \(F \) be a \(k \)-uniform hypergraph with \(m_k(F) \geq 1 \). If \(F \) contains a strictly \(k \)-balanced subgraph \(F' \) with \(m_k(F') = m_k(F) \) and \(F' \) is a clique, or \(\chi(F') \geq k + 1 \), or \(m(F') \geq 2 + 2^k - 1 v(F') - 2^k \), or \(F' \) is spacious, or \(\lfloor km_k(F') \rfloor \leq r(\delta(F') - 1) \) or \(\lfloor km_k(F') \rfloor < (\chi(F') - 1)r \), then there exists a constant \(c = c(F) > 0 \) such that \(\lim_{n \to \infty} \Pr[H(k)(n, p) \to F] = 0 \) if \(p \leq cn^{-1/m_k(F)} \).
Our Full Result

Theorem (Gugelmann, Person, Steger, T. ’12)

Let $k \geq 3$ and F be a k-uniform hypergraph with $m_k(F) \geq 1$. If F contains a strictly k-balanced subgraph F' with $m_k(F) = m_k(F')$ and

- F' is a clique, or
- $\chi(F') \geq k + 1$, or
- $m(F') \geq 2 + \frac{2k-1}{v(F')-2k}$, or
- F' is spacious, or
- $\lfloor km_k(F') \rfloor \leq r(\delta(F') - 1)$ or $\lfloor km_k(F') \rfloor < (\chi(F') - 1)^r$,

then there exists a constant $c = c(F) > 0$ such that

$$\lim_{n \to \infty} \Pr[H^{(k)}(n, p) \to (F)^k_2] = 0 \quad \text{if } p \leq cn^{-1/m_k(F)}.$$
Open Problems

For which hypergraphs \(F \) do we have
\[
 m(H) \leq m_k(F) \Rightarrow H \not\rightarrow (F)^k_2
\]

What is the threshold for all other hypergraphs?
Open Problems

- **Full Characterization** for which hypergraphs the threshold is at
 \[p \gtrsim n^{-1/m_k(F)} \]
Open Problems

- **Full Characterization** for which hypergraphs the threshold is at

 \[p \approx n^{-1/m_k(F)} \]

- For which hypergraphs \(F \) do we have

 \[m(H) \leq m_k(F) \Rightarrow H \not\rightarrow (F)_2^k \]
Open Problems

- **Full Characterization** for which hypergraphs the threshold is at
 \(p \lesssim n^{-1/m_k(F)} \)

- For which hypergraphs \(F \) do we have
 \[m(H) \leq m_k(F) \implies H \leftrightarrow (F)_2^k \]?

- What is the threshold for all other hypergraphs?