Random Graphs

Exercise 11

1. Let \(n \) be sufficiently large and let \(0 < d < n - 1 \) be an integer. Prove that a.s. \(G(n, d/n) \) is not \(d \)-regular.

2. Let \(G = G_{k-out} = (V, E) \), and let \(u \in V \) be an arbitrary vertex.

 (a) What is the expected in-degree of \(u \) in \(G \)?

 (b) What is the expected number of pairs of anti-parallel edges (that is, pairs \(\{u, v\} \in \binom{[n]}{2} \) such that \((u, v) \in E \) and \((v, u) \in E \))?

3. Let \(B_{k-out} \) denote the random bipartite directed graph, with both parts of size \(n \), in which every vertex chooses \(k \) out-neighbors uniformly at random, without replacement, and independently of every other vertex. Prove that a.s. \(B_{k-out} \) admits a perfect matching, for every \(k \geq 10 \).

 Hint: Denote the parts by \(A \) and \(B \). By Hall’s Theorem, if the graph does not admit a perfect matching, then there exists a subset \(X \subseteq A \) with \(|\Gamma(X)| < |X| \). Consider the following two cases separately:

 (a) \(1 \leq |X| \leq n/2 \);

 (b) \(n/2 < |X| \leq n \).

 Note that the lower bound \(k \geq 10 \) is not tight.

Remark: In all questions concerning \(G_{k-out} \) (or \(B_{k-out} \)) you can assume that \(k \) is a constant.