1. Consider the following famous theorem of Dirac (1952):

Theorem 1 Let G be a graph on $n \geq 3$ vertices. If the minimum degree of G is at least $n/2$, then G is Hamiltonian.

(a) Prove Dirac’s Theorem.

(b) Use Dirac’s Theorem to prove that for an arbitrarily small $\varepsilon > 0$, $G(n, 1/2 + \varepsilon)$ is a.s. Hamiltonian.

Hint: use Chernoff’s bound, stating that if $X \sim \text{Bin}(n, p)$, then $\Pr(X \leq (1 - \varepsilon)np) \leq e^{-\varepsilon^2 np/2}$, where $0 \leq \varepsilon < 1$.

2. Let $0 < \varepsilon \leq 1/2$ be arbitrarily small, let $p = n^{\varepsilon-1/2}$ and let $G = G(n, p)$.

(a) Prove that G is a.s. \sqrt{n}-vertex-connected (a graph G is called k-vertex-connected if $G[V(G) \setminus S]$ is connected for every $S \subseteq V(G)$ such that $|S| < k$).

(b) Prove that a.s. G contains a Hamilton cycle.

Hint: use the following theorem ($\kappa(G)$ is the vertex-connectivity of G, that is $\kappa(G) = k$ if G is k-vertex-connected but it is not $(k + 1)$-vertex-connected):

Theorem 2 (Chvátal and Erdős 1972) If $|V(G)| \geq 3$ and $\kappa(G) \geq \alpha(G)$, then G is Hamiltonian.