1. Let \(G = G(n, p) = (V, E) \), where \(n \) is sufficiently large, and \(p = \frac{1}{n} (\log n + \log \log n + o(1)) \). Let \(S \) denote the set of vertices of \(G \) which have degree at most \(\frac{\log n}{\log \log n} \).

(a) Prove that a.s. \(|S| = o(\sqrt{n}) \).

(b) Prove that a.s. \(S \) is an independent set.

Hint: Use the following corollary of the FKG inequality: Let \(P_1 \) be a monotone increasing graph property and let \(P_2 \) be a monotone decreasing graph property; then \(\Pr(G(n, p) \in P_1 \cap P_2) \leq \Pr(G(n, p) \in P_1) \cdot \Pr(G(n, p) \in P_2) \)

(c) Prove that a.s. the maximum degree in \(G \) is at most \(10 \log n \).

(d) Prove that a.s. \(\text{dist}_G(u, v) \geq 100 \) for every two vertices \(u, v \in S \).

(e) Prove that a.s. \(|U \cup \Gamma(U)| \geq 3|U| \) for every \(U \subseteq S \).

(f) Prove that a.s. \(|U \cup \Gamma(U)| \geq 3|U| \) for every \(U \subseteq V \) of size \(n^{3/4} \leq u \leq n/4 \).