Graphs and Algorithms

Edge Covers and Matchings

An edge cover of a graph \(G = (V, E) \) is a set \(C \subseteq E \) of edges such that every vertex of \(G \) is incident to some edge of \(C \). Let \(C^* \) be a minimum edge cover of \(G \) and \(M^* \) be a maximum matching of \(G \). Show that \(|C^*| + |M^*| = |V| \).

Sperner’s Lemma

Prove Sperner’s lemma: Given an \(n \)-element set \(X \), there are at most \(\binom{n}{\lfloor n/2 \rfloor} \) subsets of \(X \) such that no two contain each other.

Hint: Consider the \(n \)-dimensional hypercube. We call a directed path \((v_1, v_2, \ldots, v_k) \) in the hypercube monotone if and only if for any two vertices \(v_i, v_j \) with \(1 \leq i < j \leq k \), the vertex label of \(v_j \) can be obtained from \(v_i \) by flipping 0-coordinates to 1-coordinates. Construct \(\binom{n}{\lfloor n/2 \rfloor} \) monotone paths covering the \(n \)-dimensional hypercube.

Cantor-Bernstein-Schröder Theorem

Prove the Cantor-Bernstein-Schröder theorem: If there exist injective functions \(f : A \to B \) and \(g : B \to A \) between two infinite sets \(A \) and \(B \), then there exists a bijective function \(h : A \to B \).

Hint: Consider alternating chains of elements obtained by repeatedly applying \(f, g \) and their inverse functions.

Discussion of the exercises on 03.04.2008.