Exercise 1

For the proof of the first part of the exercise, we need the following lemma.

Lemma 1. Let $T = (V, E)$ and $T' = (V, E')$ be two spanning trees of a graph G and let $e \in E \setminus E'$ be an edge that belongs to T but not to T'. Then there is an edge $e' \in E \setminus E$ such that $(V, E \setminus \{e\} \cup \{e'\})$ is a spanning tree of G.

Proof. Removing e separates the tree T into two subtrees T_1 and T_2. There must be at least one edge e' of T' which connects a node in T_1 with a node in T_2. The tree $(V, E \setminus \{e\} \cup \{e'\})$ is a spanning tree of G. \qed

- We can now show how B can win the game if G contains two edge-disjoint spanning trees. Once there is a blue spanning tree, B clearly wins the game. B can obtain a blue spanning tree by applying the following strategy. At all times, B maintains the invariant that there are two spanning trees T_0 and T_1 consisting of blue and uncolored edges of G such that the uncolored parts of T_0 and T_1 are edge-disjoint. At the beginning, B can find two such spanning trees because we assume that G contains two edge-disjoint spanning trees. If R colors an edge e of T_i, by the above lemma, there is an edge e' of $T_{1-i} \setminus T_i$ such that $T_i \setminus \{e\} \cup \{e'\}$ is a spanning tree of G. By coloring e' blue, B can maintain the invariant that there are two spanning trees consisting of blue and uncolored edges such that the uncolored parts are edge-disjoint. The two trees are now $T_i \setminus \{e\} \cup \{e'\}$ and T_{1-i}. If R colors an edge that does not belong to T_0 or T_1, B can color an arbitrary edge to maintain the invariant. Because in the end, all edges are colored, the invariant implies that there will be a blue spanning tree and B therefore wins the game.

- Yes, R can always win if G does not contain two edge-disjoint spanning trees. For the sake of contradiction assume that G does not contain two edge-disjoint spanning trees and that B has a winning strategy. B then has a strategy to construct a blue spanning tree of G. Because R starts the game, R can achieve whatever B can achieve. In particular, R can start by coloring an arbitrary edge and then play B’s strategy from the second step on. To win, B has to construct a blue spanning tree of G. If B can win, R therefore can construct a red spanning tree. However, if R constructs a red spanning tree, B cannot construct a blue spanning tree because G does not contain two edge-disjoint spanning trees.

Remark: In the literature, the described kind of games are also known as Maker-Breaker games. There are two players Maker and Breaker which alternately claim edges of a graph G. Maker tries to claim a set of edges which satisfies a certain property, Breaker tries to avoid this. The game of the exercise is known as “Connectivity Game.”
Exercise 2

Let the weight of a subtree be the sum of the weights of its vertices. We first show the following lemma.

Lemma 2. For every $t \geq 1$, it is possible to remove a vertex v from T such that one of the remaining subtrees has weight at most $Wt/(t+1)$ and all other subtrees have weight less than $W/(t+1)$.

Proof. Let r be an arbitrary vertex of T and assume that T is rooted at r. We want to find a vertex v with the following properties. The total weight in the subtree rooted at v is at least $W/(t+1)$ and the weight of each of the subtrees rooted a child vertex of v is less than $W/(t+1)$. Such a vertex v satisfies the conditions of the lemma. When removing v, one of the remaining subtrees has weight at most $Wt/(t+1)$ (all nodes that are not in the subtree rooted at v) and all other subtrees have weight less than $W/(t+1)$ (the subtrees rooted at the children of v). We can find such a v with the following walk on T. We start at the root r and set $v := r$. As long as v has a child vertex v' such that the subtree rooted at v' has weight at least $W/(t+1)$, we set $v := v'$. As soon as the weights of the subtrees of all children of v are less than $W/(t+1)$, we have found a vertex v with the desired properties. □

We can now use Lemma 2 to show both parts of the exercise.

- Using $t = 1$ in Lemma 2 directly gives what we need.
- We apply induction on k. For $k = 1$, the statement is equivalent to the first part of the exercise. For $k > 1$, we use Lemma 2 with $t = k$ to separate T into one subtree T' of weight at most $W' = Wk/(k+1)$ and subtrees of weight at most $W/(k+1)$. By the induction hypothesis, we can find $k-1$ vertices to separate T' into subtrees of weight at most

$$\frac{W'}{k-1+1} = W \cdot \frac{k}{k+1} \cdot \frac{1}{k} = \frac{W}{k+1}.$$