Graphs and Algorithms

Greedy Coloring of Trees

We construct an infinite family of rooted trees T_k ($k \geq 0$) as follows: Let T_0 be an isolated vertex and T_k the tree that is obtained by connecting a new root vertex v to the root vertices of copies of all trees $T_0, T_1, \ldots, T_{k-1}$. Clearly we have $n(T_k) = 2^k$. We want to show that there is an ordering π of the vertices of T_k such that $\text{Greedy-Coloring}(T_k, \pi) = k + 1 = \Omega(\log n)$. Such an ordering π can be defined recursively.

Maintain Connectivity

Let v be a vertex with maximum degree. Then $H := G[\{v\} \cup \Gamma(v)]$ is not a complete graph, otherwise $G = H$ would be a complete graph or H would be a component of G disconnected from the rest of G. Hence we can find vertices \hat{x} and \hat{y} in $\Gamma(v)$ with $\text{dist}(\hat{x}, \hat{y}) = 2$. If $G - \hat{x} - \hat{y}$ is connected then we are done. Otherwise, $\{\hat{x}, \hat{y}\}$ is a minimal separating set. As G is 2-connected and not a cycle, we have $\Delta(G) \geq 3$ and hence $\text{deg}(v) \geq 3$. This means the component C of $G - \hat{x} - \hat{y}$ that contains v contains more vertices apart from v. As v is not an articulation node in G, there is a vertex x from $C - v$ that is a neighbor of \hat{x} or \hat{y}. As $\{\hat{x}, \hat{y}\}$ is a minimal separating set, every component of $G - \hat{x} - \hat{y}$ contains neighbors from both \hat{x} and \hat{y}. In particular there is a vertex y with $\text{dist}(x, y) = 2$ from a component in $G - \hat{x} - \hat{y}$ different from C. We claim that $G - x - y$ is connected. As \hat{x} and \hat{y} are connected in $G - x - y$ via the vertex v, it suffices to show that every vertex in $G - x - y$ is connected to \hat{x} or \hat{y}. As $G - x$ is connected, every vertex in $C - x$ is connected in $G - x$ to \hat{x} or \hat{y} via a path that does not contain y. Similarly, as $G - y$ is connected, every vertex in $(V(G) \setminus C) - y$ is connected in $G - y$ to \hat{x} or \hat{y} via a path that does not contain x.