Graphs and Algorithms

Hamilton Paths in Tournaments

An oriented complete graph is called a tournament. Show that every tournament contains a Hamilton path, i.e., a path that visits every vertex exactly once. How many Hamilton paths are there in an acyclic tournament (a tournament without directed cycles)?

Hamilton Cycles in the Hypercube

Let $n \geq 2$. Show that every perfect matching in the n-dimensional hypercube H_n can be extended to a Hamilton cycle.

Hint: Consider the following stronger statement. Let $K(H_n)$ be the graph that is obtained from H_n by adding all nonexistent edges. Show by induction on n that every perfect matching in $K(H_n)$ can be extended to a Hamilton cycle by using only edges of H_n.