Exercise 1 (Edge Covers and Matchings)

From a maximum matching M^* we will construct an edge cover of size $|V| - |M^*|$. Since a smallest edge cover is not bigger than this cover, this implies $|C^*| \leq |V| - |M^*|$. Also, from a minimum edge cover C^* we will construct a matching of size $|V| - |C^*|$. Since a largest matching is not smaller than this matching, this implies $|M^*| \geq |V| - |C^*|$. These two inequalities prove that $|C^*| + |M^*| = |V|$.

Consider a maximum matching M^*. We construct an edge cover C of G as follows: We start with $C := M^*$ and for each of the $|V| - 2|M^*|$ vertices which are not saturated by M^* we add an incident edge to C. Hence we have $|C| = |M^*| + |V| - 2|M^*| = |V| - |M^*|$.

Now consider a minimum edge cover C^*. Let S_1, \ldots, S_s denote the components formed by the edges of C^*. Clearly, C^* does not contain cycles, and all paths in C^* have length at most 2 since otherwise we can construct an edge cover of smaller size. Hence, S_i is a star for every $1 \leq i \leq s$. We now build a matching M by choosing an arbitrary edge from every star, and obtain

$$|M| = \sum_{i=1}^{s} 1 = \sum_{i=1}^{s} |(V(S_i) - E(S_i))| = \sum_{i=1}^{s} |V(S_i)| - \sum_{i=1}^{s} |E(S_i)| = |V| - |C^*|.$$

Exercise 2 (Independent Sets and Edge Covers)

(a) Let I^* be a maximum independent set and C^* be a minimum edge cover. Clearly, every edge in C^* contains at most one vertex of I^* and since G is connected, every vertex in I^* is contained in at least one edge of C^*. Hence $|C^*| \geq |I^*|$.

(b) We need to show $|I^*| \geq |C^*|$. Let I^* be a maximum independent set in $G = (A \cup B, E)$, and let $X := V(G) \setminus I^*$. The idea is to construct an edge cover C of size $|I^*|$ by matching every vertex in X with a vertex in I^* and then add another edge to C for every vertex in I^* which was not covered by the matching. It then follows that for a minimum edge cover C^* we have $|C^*| \leq |C| = |I^*|$.

The following construction is illustrated in Figure 1. Let $X_A := X \cap A, X_B := X \cap B$ and $I_A := I^* \cap A, I_B := I^* \cap B$. Consider the bipartite graphs $B_1 := G[I_A \cup X_A]$ and $B_2 := G[I_B \cup X_B]$. Observe that the above construction for an edge cover C works out if B_1 contains a matching of size $|X_A|$ and B_2 contains a matching of size $|X_B|$.

Assume that B_1 does not contain a matching of size $|X_A|$. Then by Hall’s Theorem there exists $S \subseteq X_A$ such that $|S| > |\Gamma_B(S)|$. We set $I' := (I^* \setminus \Gamma_B(S)) \cup S$. Note that I' is an independent set since $\Gamma_G(S) \cap I^* = \Gamma_B(S)$. Moreover, $|I'| > |I^*|$ which is a contradiction to the maximality of I^*. The same argument shows that B_2 contains a matching of size $|X_B|$.
Exercise 3 (Hall’s Theorem on Infinite Graphs)

We set \(A := \{a_0, a_1, a_2, \ldots \} \), \(B := \{b_1, b_2, \ldots \} \) and let \(G = (A \cup B, E) \) where \(E = \bigcup_{i \in \mathbb{N}} \{ \{a_0, b_i\}, \{a_i, b_i\} \} \) (see Figure 2). Then for every subset \(X \subseteq A \) we have \(|A| \leq |\Gamma(A)| \) but there is no matching in \(G \) that covers every vertex in \(A \).

Figure 1: Illustration of the construction in Exercise 2 (b).

Figure 2: Illustration of an infinite counterexample to Hall’s Theorem