Graphs and Algorithms

Edge Coloring I

By Vizing's theorem we know that $\chi'(G) \in \{\Delta, \Delta + 1\}$. In order to prove the statement it therefore suffices to show that $\chi'(G) \neq \Delta$. Suppose for the sake of contradiction that G has a Δ-edge coloring. As G is Δ-regular, among the edges incident at each vertex all colors appear exactly once. Hence the union of the edges in any two colors $i, j \in [\Delta]$ is a spanning subgraph $H(i, j)$ of G that consists of even length cycles, each of them being colored alternatingly in one of the two colors.

(i) Consider any two colors $i, j \in [\Delta]$. As $H(i, j)$ consists of even length cycles the number of vertices of $H(i, j)$ and hence the number of vertices of G is even, a contradiction.

(ii) Let i be the color of a bridge e, and let j be any other color. We know that $H(i, j)$ is a union of cycles, one of them containing e. But a bridge can never be an element of a cycle, hence we have a contradiction.

(iii) Let v be an articulation vertex and i, j the colors of two edges e_i and e_j that are incident to v and that belong to different blocks. Again we know that $H(i, j)$ is a union of cycles, one of them containing both e_i and e_j. But the only cycles an articulation vertex is contained in are cycles within one and the same block, hence we have a contradiction.

Edge Coloring II

It suffices to show that $G' := G - M$ has edge-chromatic number $\Delta := \Delta(G)$. We can then color G with $\Delta + 1$ colors by coloring G' with colors $1, 2, \ldots, \Delta$ and assigning color $\Delta + 1$ to all the edges of M.

Let S be the set of vertices of degree Δ that are not covered by M. If $S = \emptyset$, G' has maximum degree smaller than Δ and can therefore be colored with Δ colors by Vizing's theorem. If $S \neq \emptyset$, the vertices of S form an independent set in G (and in G') because otherwise M would not be maximal. Therefore, G' is a graph with maximum degree Δ such that all the vertices of maximum degree form an independent set. We want to show that such a graph can always be edge-colored with Δ colors.

To color G' with Δ colors, we can adapt the constructive proof of Vizing's theorem that was discussed in the lecture. First, we Δ-color the subgraph of G' that is induced by all vertices of degree less than Δ. Note that this can be done because of Vizing's theorem. It now remains to color all edges that are incident to a vertex of degree Δ. We color these edges in some arbitrary order. A new edge is assigned a color in $\{1, 2, \ldots, \Delta\}$ in exactly the same way a new edge is assigned a color in $\{1, 2, \ldots, \Delta + 1\}$ in Vizing's proof. Assume that x is a vertex of degree Δ and that we want to color the edge $\{x, y\}$. For a vertex u, let F_u be the set of colors that are missing at u, i.e. F_u is the set of colors such that there is no edge with a color in F_u incident to u. Note that $F_x \cap \{1, 2, \ldots, \Delta\} \neq \emptyset$ because at most $\Delta - 1$ edges incident to x have been assigned a color before assigning a color to $\{x, y\}$. Note also that for all neighbors z of x, $F_z \cap \{1, 2, \ldots, \Delta\} \neq \emptyset$ because z has degree at most $\Delta - 1$. This is the only point where our proof differs from the proof of Vizing’s theorem. In general, we can only assume that for every neighbor z of x, there is a free color in $\{1, 2, \ldots, \Delta + 1\}$ in F_z. The rest of the proof is identical to the proof of Vizing's theorem from the lecture.