Exercise 1 - Ramsey numbers

(a) It was shown in the lecture that \(R(p, q) \leq R(p - 1, q) + R(p, q - 1) \) and also that \(R(3, 4) = 9 \) and \(R(k, 2) = k \) for every \(k \geq 2 \). As obviously \(R(k, 2) = R(2, k) \), it follows that \(R(3, 5) \leq R(2, 5) + R(3, 4) = 5 + 9 = 14 \).

(b) We need to show that every 3-coloring of \(E(K_{17}) \) contains a monochromatic triangle. A vertex \(v \in V(K_{17}) \) has 16 adjacent edges colored in three colors. Hence, we find at least \(\lceil \frac{16}{3} \rceil = 6 \) neighbors \(v_1, \ldots, v_6 \) of \(v \) such that the edges \(\{v, v_i\} \) for \(1 \leq i \leq 6 \) all have the same color, say red. These six vertices span a \(K_6 \). If there is a red edge among the edges of this \(K_6 \), we have found a red triangle. Otherwise the edges of this \(K_6 \) are colored with only 2 colors. Because \(R(3, 3) = 6 \), this means that it has to contain a monochromatic triangle.

Exercise 2 - Outerplanar graphs

From a graph \(G = (V, E) \) construct a new graph \(G' = (V', E') \) by adding a new vertex and connecting it to all vertices of \(G \): \(V' = V \cup v', E' = E \cup \{\{v, v'\} | v \in V\} \).

Then \(G' \) is obviously planar if \(G \) is outerplanar. Furthermore, if \(G \) is planar we can delete \(v' \) from some drawing of \(G' \) in the plane to get a drawing of \(G \) in which all vertices are contained in the boundary of one face. Then we can choose a drawing of \(G \) with this face as the outer face. This shows that \(G \) is outerplanar if and only if \(G' \) is planar.

By Kuratowski, the planarity of \(G' \) is equivalent to \(G' \) not containing a subdivision of \(K_5 \) or of \(K_{3,3} \). Now, we can see that this is equivalent to \(G \) not containing a subdivision of \(K_4 \) or of \(K_{2,3} \). Indeed, if \(G' \) has a subgraph \(H \) isomorphic to a subdivision of \(K_5 \) or of \(K_{3,3} \) then either \(v' \notin V(H) \), i.e. \(H \) is also a subgraph of \(G \), or \(H \setminus \{v'\} \) contains a subdivision of \(K_4 \) or of \(K_{2,3} \). For the other direction, if \(G \) contains a subgraph \(H \) that is isomorphic to a subdivision of \(K_4 \) or of \(K_{2,3} \), \(H \) together with \(v' \) and the edges connecting \(v' \) to the vertices of \(H \) contain a subdivision of \(K_5 \) or of \(K_{3,3} \).