Topics in Random Graphs

Solving this exercise sheet is not compulsory. If you would like feedback on your solution hand it in by March 25, either by email at lgugelmann@inf.ethz.ch or on paper at CAB G32.2.

Exercise 1

Prove that for all k, ℓ there exists a regular graph G such that $\chi(G) > k$ and $\text{girth}(G) > \ell$.

Hint: Consider a random regular graph $G' \sim G_{n,r}$ for some $r = r(k)$ large enough. Bound $\alpha(G')$.

Exercise 2

Prove that for all fixed $r \geq 3$, a random regular graph $G \sim G_{n,r}$ is connected with high probability.

Remark: Using similar techniques it is possible to prove that G is in fact whp r-connected.

Exercise 3

Let $r \geq 3$ fixed and n large enough. Prove that there exists a graph G on n vertices with $r - 1 \leq \delta(G) \leq \Delta(G) \leq r$ such that

$$\text{girth}(G) \geq \frac{c \log n}{\log r}$$

for some constant $c > 0$.

Recall: $\delta(G)$ and $\Delta(G)$ denote respectively the minimum and maximum degree over all vertices of G.

Hint: Consider a random r-regular graph G'. Prove that that whp G' contains no subgraph with k vertices and $k + 1$ edges for all $k \leq \ldots$, i.e. that there are whp no intersecting cycles of length at most k.