Topics in Random Graphs

Solution of Exercise 2

By Euler’s formula, we have $n - e + f \geq 2$ (with n, e, f denoting the number of vertices, edges and faces of a planar graph). If a graph G has girth at least k then $f \leq \frac{2e}{k}$ and therefore $e \leq \frac{k}{k-2}(n-2) \leq \left(1 + \frac{2}{k-2}\right)n$.

We choose $k := \frac{4}{\epsilon} + 2$ (1)

Hence $\frac{2}{k} = \frac{2 \epsilon}{k-2}$ and therefore we have the following.

Claim 1. If a graph G on n vertices has girth at least k then $|E(G)| \leq (1 + \frac{2 \epsilon}{k-2})n$.

Let $G = G(n, m)$ with $m \geq (1 + \epsilon)n$ and for every $i, 1 \leq i \leq n$, let N_i and $N_{\leq i}$ denote the number of cycles of length i and length at most i, respectively, in G. In the following, a cycle is called short if it has length at most k. The next claim bounds the expected number of short cycles.

Claim 2. We have $\mathbb{E}[N_{\leq k}] \leq c$ where c does not depend on n.

Proof. Suppose that $V(G) = \{v_1, v_2, \ldots, v_n\}$. For every sequence i_1, i_2, \ldots, i_j with $j \leq k$ let X_{i_1,i_2,\ldots,i_j} be the indicator variable for the event that the cycle $v_{i_1}, v_{i_2}, \ldots, v_{i_j}$ appears in G. So for every $j \leq k$,

\[
\mathbb{E}[N_j] = \sum_{i_1, i_2, \ldots, i_j} \mathbb{E}[X_{i_1,i_2,\ldots,i_j}]
\leq n^j \cdot \left(\frac{m}{\binom{n}{2}}\right)^j
\leq \left(\frac{m}{n-1}\right)^j 2^j
\leq (2 + 2\epsilon)^j \left(\frac{n}{n-1}\right)^j
\leq (2 + 2\epsilon)^j e^{\frac{\epsilon}{n-1}} \quad \text{(note that } \frac{n}{n-1} = 1 + \frac{1}{n-1})
\leq (2e + 2\epsilon)^j
\]

Hence $N_{\leq k} \leq k(2e + 2\epsilon)^k$. Setting $c := k(2e + 2\epsilon)^k$ proves the claim. \qed
Let c be the constant from Claim 2. By Markov’s inequality we get $\mathbb{P}[N_{\leq k} \geq \log n] \leq \frac{\mathbb{E}[N_{\leq k}]}{\log n} \leq \frac{c}{\log n}$. So a.a.s. G contains at most $\log n$ short cycles. We remove one edge per short cycle and let G' denote the resulting graph. Hence a.a.s. G' contains at least $m - \log n \geq (1 + \epsilon)n - \log n \geq (1 + \frac{3}{4})n$ edges. Note that the girth of G' is at least k. If G' is planar then by Claim 3 $|E(G')| \leq (1 + \frac{3}{4})n$. But a.a.s. G' has more edges and thus cannot be planar. This means that a.a.s G is non-planar as well.

Solution of Exercise 3

Let $n = t^{1+\epsilon}$. We choose p such that

$$\frac{4(1 + \epsilon) \ln t}{t - 1} < p < \frac{1}{2} t^{-\frac{2(1+\epsilon)}{3}}. \tag{2}$$

This is possible since for ϵ small and t large enough, $\frac{4(1 + \epsilon) \ln t}{t - 1} \ll \frac{1}{2} t^{-\frac{2(1+\epsilon)}{3}}$.

Let $G = G(n,p)$. For an integer k let C_k denote the number of cliques of order k and let I_k denote the number of independent sets of order k. We have $\mathbb{E}[C_k] = {n \choose k} p^{\frac{k(k+1)}{2}}$ and $\mathbb{E}[I_k] = {n \choose k} (1 - p)^{\frac{k(k+1)}{2}}$.

The goal is to show that $\mathbb{E}[C_4] < \frac{1}{2}$ and $\mathbb{E}[I_t] < \frac{1}{2}$. This directly implies that $\mathbb{E}[C_4 + I_t] < 1$ and thus guarantees that $R(4, t) > n$.

By (2) we have $\mathbb{E}[C_4] = {n \choose 4} p^6 \leq t^{4(1+\epsilon)} p^6 < \frac{1}{2}$. Moreover,

$$\mathbb{E}[I_t] = {n \choose t} (1 - p)^{\frac{t(t+1)}{2}} \leq n^t e^{-p \frac{t(t+1)}{2}} \leq n^t e^{-pt(1-\epsilon)} = \left(n^{1+\epsilon} e^{-pt(1-\epsilon)} \right)^t \leq \frac{1}{2}$$

The last inequality follows from (2). Hence we are done.

Solution of Exercise 4

We only prove the statement for the clique number, the one for the independence number is identical as the probability of having an edge or non-edge are equal.

Let X denote the number of cliques of size k in $G(n, 1/2)$. It is easy to see that:

$$\mathbb{E}[X] = {n \choose k} 2^{-\frac{k(k+1)}{2}}$$

We want to prove sharp concentration of X around this value, so we need to bound the variance of X. We have that

$$\mathbb{E}[X^2] = \sum_{i=0}^{k} {n \choose k} {k \choose i} (n-k)^{i} 2^{-2\frac{k(k+1)}{2} + \frac{i(i+1)}{2}}.$$
The sum runs over \(i \), the number of vertices in which two cliques of size \(k \) can overlap. The binomial coefficients represent the choices for the vertices in the first clique, the choice of the \(i \) overlap-vertices and the choices for the remaining vertices of the second clique respectively.

The remaining term of the variance is given by

\[
E[X]^2 = \sum_{i=0}^{k} \binom{n}{k} \binom{k}{i} \binom{n-k}{k-i} 2^{-2\binom{i}{2}}.
\]

The sum results from applying Vandermonde’s identity.

Combining the last two equations we have that:

\[
\frac{\text{Var}(X)}{E[X]^2} = \frac{\sum_{i=2}^{k} \binom{n}{k} \binom{k}{i} \binom{n-k}{k-i} 2^{-2\binom{i}{2}} (2\binom{2}{2} - 1) = \sum_{i=2}^{k} \binom{k}{i} \frac{(n-k)(2\binom{2}{2} - 1)}{\binom{n}{k}}.}
\]

With some effort it is possible to see that the above equation is indeed \(o(1) \), so by Chebyshev’s inequality \(X \sim E[X] \) for \(n \to \infty \).

Now set \(k = \lceil 2 \log_2 n \rceil \). Then

\[
E[X] = \left(\frac{n}{k} \right)^{2^{-\binom{2}{2}}} \leq \left(\frac{en}{k} \right)^{2^{-\binom{2}{2}}} + \frac{1}{2} = \left(\frac{en^{2-k/2}2^{2}}{2} \sqrt{\frac{2}{k}} \right)^{k} \leq \left(\frac{e2^{2}}{2} \right)^{k} = o(1).
\]

On the other hand we have for e.g. \(k = \lceil 2 \log_2 n - 2 \log_2 2 \log_2 n \rceil \) that

\[
E[X] \geq \left(\frac{n}{k} \right)^{2^{-k/2+k/2}} = \left(\frac{en^{2-k/2}2^{2}}{2} \sqrt{\frac{2}{k}} \right)^{k} \geq \left(\frac{2\sqrt{2} \log_2 n}{2 \log_2 n - 2 \log_2 2 \log_2 n} \right)^{k} \geq \sqrt{2} \to \infty
\]

Solution of Exercise 5

From Exercise 4 we know that for \(G \sim G(n, 1/2) \) we have independence number \(\alpha(G) = (1 + o(1))2 \log_2 n \). By using the inequality \(\chi(G) \geq \frac{\log_2 |G|}{\log_2 \alpha(G)} \) we immediately have that \(\chi(G) > C_1 \frac{n}{\log_2 n} \) for some constant \(C_1 \).

Proposition 3. For some constant \(C_2 \) with high probability \(G \) contains no subgraph \(H \) on \(k > C_2 \log_2 n \) vertices such that \(H \) contains more than \(\frac{3}{4} \binom{k}{2} \) edges.

Proof. The number of edges in a fixed subgraph \(H \) is distributed according to \(\text{Bin}(k, 1/2) \).

Using Chernoff-type bounds we know that \(\mathbb{P}[E(H) > \frac{3}{4} \binom{k}{2}] < e^{-c_3 k^2} \). With a union bound we obtain that

\[
\mathbb{P}[\exists H \subset G \text{ s.t. } \ldots] \leq \binom{n}{k}e^{-c_3 k^2} = o(1).
\]

We now want to bound the Hajos number of \(G \). Assume that \(\text{Haj}(G) \geq k > C_2 \log_2 n \). Then we can find a set \(S \subset V(G) \) of \(k \) vertices such that there exists a subdivision of \(K_k \) on these vertices. Denote with \(H \) the subgraph of \(G \) induced by \(S \). From the proposition above we know that \(H \) is missing at least \(\frac{1}{4} \binom{k}{2} \) edges. To obtain a subdivision of \(K_k \) on \(S \) each missing edge must be compensated for by a path of length \(\geq 2 \) with at least one vertex outside of \(H \). As all these paths must be non-intersecting we have that there can be at most as many as there are vertices in \(G \setminus H \): \(\frac{1}{4} \binom{k}{2} < n - k \). The Hajos number for \(G \) is therefore bounded from above by \(k \leq C_3 \sqrt{n} \), which for \(n \) large enough is smaller than \(C_1 \frac{n}{\log_2 n} \).