Let \(\alpha'(G) \) be the maximum cardinality of a matching of \(G \), and let \(\beta'(G) \) be the minimum cardinality of an edge cover of \(G \).

Exercise 1

Let \(G = (V, E) \) be a graph with no isolated vertices. Prove that \(\alpha'(G) + \beta'(G) = \lvert V \rvert \).

Exercise 2

Let \(G = (A \uplus B, E) \) be a bipartite graph. Prove that

\[
\alpha'(G) = \lvert A \rvert - \max_{S \subseteq A} (\lvert S \rvert - \lvert \Gamma(S) \rvert).
\]

Exercise 3

Let \(G = (V, E) \) be a graph. We define its total graph \(T(G) \) by taking as vertices \(V \cup E \), and defining the adjacency relation (i.e., the edge set) via

(i) \(v \in V \) and \(u \in V \) are adjacent in \(T(G) \) if they are neighbors in \(G \).

(ii) \(v \in V \) and \(e \in E \) are adjacent in \(T(G) \) if \(v \in e \) (that is, \(v \) is an endpoint of \(e \) in \(G \)).

(iii) \(e \in E \) and \(f \in E \) are adjacent in \(T(G) \) if they are coincident in \(G \) (that is, they share an endpoint).

Prove that if \(G \) is connected and has at least two vertices, then \(T(T(G)) \) is Hamiltonian.

Hint: First prove that \(T(G) \) contains a spanning subgraph which is Eulerian.

Exercise 4

a) What is the minimum connectivity of a Hamiltonian graph on \(n \) vertices?

b) What is the maximum connectivity of a non-Hamiltonian graph on \(n \) vertices?

Submit your solutions by email until 14.04.2011.