As previously calculated, which consists of exactly x, y and z, following bijection: map a forest $T \in T$ to a tree n, R if y. Note, as previously defined as n, R. Let x, u and v are two vertices from $S_u \cup S_v$ or u, v. In particular, we have $d_G(y, u) \leq 1$ if $y \in S_u$ or $d_G(y, u) \leq 2$, if $y \in S_v$. Therefore, $d_G(x, y) \leq d_G(x, u) + d_G(y, u) \leq 3$. Same will hold for any $x \in S_v$ and $y \in V$ by symmetry. This concludes the proof.

Exercise 2 (Number of labeled forests)

Let $F(n, R)$, where $R \subseteq [n]$, be the family of all forests on the vertex set $[n]$ which consists of exactly $|R|$ trees. Similarly, let $T(n, R)$ be the family of all trees on the vertex set $[n + 1]$ with the property that $N_T(n + 1) = R$ for every $T \in T(n, R)$, i.e. the neighborhood of the vertex labeled with $n + 1$ is exactly the set of vertices in R. It is easy to see that $|F(n, R)| = |T(n, R)|$ by the following bijection: map a forest $F = (V, E) \in F(n, R)$ to a tree $T \in T(n, R)$ defined as

$$T = (V \cup \{n + 1\}, E \cup \bigcup_{i \in R} \{n + 1, i\}).$$

Therefore, instead of calculating $F(n, k) = |F(n, \{n - k + 1, \ldots, n\})|$ we will calculate $|T(n, \{n - k + 1, \ldots, n\})|$. First, observe that by the symmetry we have $|T(n, R)| = |T(n, R')|$ for every $R, R' \subseteq [n]$ with $|R| = |R'|$. In particular, we have $F(n, k) = |T(n, R)|$ for every $R \subseteq [n]$, such that $|R| = k$. Next, let us denote with $T_k(n)$ the family of all trees on the vertex set $[n + 1]$ such that $\deg_T(n + 1) = k$ for every $T \in T_k(n)$. Then

$$T_k(n) = \bigcup_{R \subseteq [n], |R| = k} T(n, R)$$
and thus by the previous observation we have
\[F(n, k) = \frac{|T_k(n)|}{\binom{n}{k}}. \] (1)

It remains to calculate $|T_k(n)|$. This, however, easily follows from the fact that the degree of the vertex $n+1$ is k in T if and only if the number $n+1$ appears exactly $k-1$ times in the Prüfer code of T. Therefore, $|T_k(n)|$ is equal to the number of words from $[n+1]^{n-1}$ with the property that $n+1$ appears exactly $k-1$ times. We can choose such $k-1$ occurrences in $\binom{n-1}{k-1}$ ways and then choose the remaining elements in n^{n-k} ways. Plugging this back in (1), we have
\[
F(n, k) = \frac{(n-1)^{n-k}}{\binom{n}{k}} = \frac{n}{k} \cdot \frac{k}{n} \cdot \frac{n^{n-k}}{\binom{n}{k}} = kn^{n-k-1},
\]
where we used the fact that $\binom{n}{k} = \frac{n}{k} \cdot \binom{n-1}{k-1}$. This finishes the proof.

Exercise 3 (Strongly connected subgraph)

First, let us assume the following claim.

Claim 1. Let $G = (V, E)$ be a strongly-connected digraph and $r \in V$ an arbitrary vertex from V. Then there exists a set $E' \subseteq E$ with $|E'| \leq |V| - 1$ such that for every $x \in V$ there is a directed path from x to r using only arcs in E'.

Let $G = (V, E)$ be a strongly-connected digraph and $r \in V$ an arbitrary vertex. We define a digraph $G^T = (V, E^T)$ as
\[E^T = \{(x, y) \mid x, y \in V \text{ and } (y, x) \in E\}. \]

Note that the digraph G^T is also a strongly-connected as any directed path from x to y in G^T corresponds to a directed path from y to x in G.

Let $E_1 \subseteq E$ be a subset obtained by applying Claim 1 to the digraph G and the vertex r. Thus, we know that there exists a directed path from any vertex $x \in V$ to r using only arcs in E_1. Similarly, let $E_2^T \subseteq E^T$ be a subset obtained by applying Claim 1 to the digraph G^T and the vertex r and define $E_2 \subseteq E$ as
\[E_2 = \{(x, y) \mid x, y \in V \text{ and } (y, x) \in E_1 \}. \]

Observe that there exists a directed path from each $x \in V$ to r using only arcs in E_2^T, thus by the definition of G^T it follows that there exists a directed path using only arcs in E_2 from r to x as well. Therefore, the digraph $(V, E_1 \cup E_2)$ is strongly-connected and since $|E_1 \cup E_2| \leq 2(|V| - 1)$, this concludes the proof.

What is left is to prove Claim 1.

Proof of Claim 1. We will iteratively define sets $W \subseteq V$ and $H \subseteq E$. The set E' will be the set H at the end of the process.

In the beginning let $W = \{r\}$ and $H = \emptyset$ and $U := V \setminus W$. As long as there $U \neq \emptyset$ we repeat the following. Take an arbitrary $x \in U$ and let $P = (x, a_1, \ldots, a_{k-1}, a_k)$, where $a_k = r$, be any directed path in G from x to r. Let
\(i \in [k] \) be the smallest index such that \(a_i \in W \). There must exist such a vertex as \(r \in W \). We update \(W \) and \(H \) in the following way:

\[
W = W \cup \{x, a_1, \ldots, a_{i-1}\} \quad \text{and} \quad H = H \cup \{(r, a_1), (a_1, a_2), \ldots, (a_{i-1}, a_i)\}.
\]

We prove by induction on the size of \(W \) that \(|H| = |W| - 1\) and that all vertices in \(W \) have a directed path to \(r \) using only arcs in \(H \). Base of the induction holds trivially as \(W = \{r\} \).

Assume that \(W \) has the desired properties and \(U \neq \emptyset \). Let us denote by \(\forall \) and \(\exists \) sets \(W \) and \(H \) after the next update. When \(W \) and \(H \) are updated, we always add the same number of vertices and arcs and hence \(|H'| = |W'| - 1\) holds. Let us assume that \(W' = W \cup \{x, a_1, \ldots, a_{i-1}\} \) and \(H' = H \cup \{(r, a_1), (a_1, a_2), \ldots, (a_{i-1}, a_i)\} \). By the induction hypothesis, vertex \(a_i \) has a directed path to \(a_i \) using arcs in \(H \). As all the newly inserted vertices \(\{x, a_1, \ldots, a_{i-1}\} \) have a path to \(a_i \) using arcs \(\{(r, a_1), (a_1, a_2), \ldots, (a_{i-1}, a_i)\} \), there is also a path to \(r \) using arcs in \(H' \), which concludes the proof.

Finally, as we stop when \(U \) is empty, clearly \(W \) will be equal to \(V \) and \(E' := H \) will have the correct size.

\[\square\]

Exercise 4 (Minimum degree - maximum forward degree)

Let \(G = (V, E) \) be a given graph with \(V = \{v_1, \ldots, v_n\} \). We first show that

\[
\max_{U \subseteq V} \delta(G[U]) \geq \min_{\pi \in S_n} \max_{v \in V} fdeg_{\pi}(v). \tag{2}
\]

To show \(\ref{eq:2}\), note it suffices to construct a permutation \(\pi \in S_n \) which satisfies

\[
\max_{U \subseteq V} \delta(G[U]) \geq \max_{v \in V} fdeg_{\pi}(v). \tag{3}
\]

This can be done as follows. Set \(W := V \) and as long as \(W \neq \emptyset \) remove an element \(w \in W \) from \(W \) which satisfies \(\deg_{\pi}[W](w) = \delta(G[W]) \). Observe that it is not possible that some vertex \(w \in V \) was removed twice and moreover, since \(W = \emptyset \) at the end, we have that each vertex from \(V \) was removed exactly once. Following the order in which vertices were removed gives us as an ordering \((v_1, \ldots, v_n) \) of the vertices in \(V \). We claim that \(\pi = (i_1, \ldots, i_n) \) satisfies \(\ref{eq:3}\).

It follows from the construction that for each \(j \in [n] \) we have

\[
\delta(G_j) = \deg_{G_j}(v_{i_j}) = fdeg_{\pi}(v_{i_j}),
\]

where \(G_j := G[\{v_{i_1}, \ldots, v_{i_n}\}] \). In particular, this implies

\[
\max_{U \subseteq V} \delta(G[U]) \geq \max_{j \in [n]} \delta(G_j) = \max_{j \in [n]} fdeg(v_{i_j}),
\]

which proves \(\ref{eq:3}\).

Next, we prove

\[
\max_{U \subseteq V} \delta(G[U]) \leq \min_{\pi \in S_n} \max_{v \in V} fdeg_{\pi}(v). \tag{4}
\]
Let $\pi = (i_1, \ldots, i_n) \in S_n$ be an arbitrary permutation and consider a subset $W \subseteq V$ such that $\delta(G[W]) = \max_{U \subseteq V} \delta(G[U])$ (graphs we consider are finite, thus such W exists). Let $j \in [n]$ be the smallest index such that $v_{i_j} \in W$. Since all neighbors of v_{i_j} come after the vertex v_{i_j} in the permutation π, we have

$$d_{G}(v_{i_j}) = d_{G,\pi}(v_{i_j}) = f\deg(\pi)(v_{i_j}),$$

where G is as defined before. Finally, by the choice of W and v_{i_j} we have

$$\max_{v \in V} f\deg(\pi)(v) \geq d_{G}(v_{i_j}) = d_{G,\pi}(v_{i_j}) \geq \delta(G[W]) = \max_{U \subseteq V} \delta(G[U]).$$

Since this holds for an arbitrary permutation $\pi \in S_n$, the inequality\(^1\) follows. Together with\(^2\), this implies

$$\max_{U \subseteq V} \delta(G[U]) = \min_{\pi \in S_n} \max_{v \in V} f\deg(\pi)(v).$$

Exercise 5 (Diameter and many k-paths)

Let T be a tree on n vertices and $k \in \mathbb{N}$ such that $q := \text{diam}(T) \geq 2k - 3$. We show that T contains at least $n - k$ different paths of length k.

In order to make the proof easier to follow, we first introduce some notation. For two distinct vertices $v_1, v_2 \in V(T)$, we denote with $P(v_1, v_2)$ the unique path from v_1 to v_2 in T. Furthermore, for a given set of vertices $S \subseteq V(T)$ we define $d_S(v)$ to be the minimum distance between a vertex $v \in V(T)$ and some vertex in S, i.e. $d_S(v) := \min_{w \in S} d(v, w)$.

For $k = 1$, the statement follows from the fact that T contains exactly $n - 1$ edges and thus $n - 1$ different paths of length 1. Therefore, from now on we can assume that $k \geq 2$.

Let $v_1, v_{q+1} \in V(T)$ be a pair of vertices with $d(v_1, v_{q+1}) = q$, let $P(v_1, v_{q+1}) = \{v_1, v_2, \ldots, v_{q+1}\}$ and $S := \{v_1, \ldots, v_{q+1}\}$ be the set of vertices of the path $P(v_1, v_{q+1})$. Observe that there are exactly $q - k + 1$ different subpaths of the path $P(v_1, v_{q+1})$ of length k:

$$P(v_1, v_{k+1}), P(v_2, v_{k+2}), \ldots, P(v_{q-k}, \ldots, v_q), P(v_{q-k+1}, v_{q+1}).$$ (5)

Next, for each vertex $v \in V(T) \setminus S =: R$ we define a path p_v as follows: if $d(v, p_1) \geq k$ then set $w := v_1$ and otherwise $w := v_{q+1}$ and let p_v be a subpath of the path $P(v, w)$ which contains the vertex v and is of length exactly k. We claim that such paths are well defined and that they are all different (and also different from paths defined in (5)). Since there are $n - q - 1$ such paths, together with paths defined in (5) this gives $n - q - 1 + q - k + 1 = n - k$ different paths of length k.

First, observe that $d(v, p_1) \geq k$ or $d(v, p_{q+1}) \geq k$. Assuming otherwise, there exists a walk from p_1 to p_{q+1} which goes through the vertex v and is of length at most $d(v, p_1) + d(v, p_{q+1}) \leq 2k - 2$. However, since $v \notin S$, the vertex v is not part of the path $P(v_1, v_{q+1})$, the unique path from v_1 to v_{q+1}. Therefore, such a walk contains at least two edges which are not contained in $P(v_1, v_{q+1})$ and transforming it into a path implies that $|P(v_1, v_{q+1})| \leq 2k - 2 < 2k - 3$.

which is a contradiction with the choice of \(v_1 \) and \(v_{q+1} \). Therefore, if \(d(v, p_1) < k \) then \(d(v, p_{q+1}) \geq k \) and \(P(v, w) \) is always of length at least \(k \). Then there also exists a subpath of the path \(P(v, w) \) which contains the vertex \(v \) and is of length exactly \(k \), thus \(p_v \) is well-defined.

Next, we show that all such obtained paths are different. First, observe that for each \(v \in R \) the path \(p_v \) contains the vertex \(v \). Therefore, it also contains an edge which is not part of \(P(v_1, v_{q+1}) \) and thus is different from all the paths defined in \(\textbf{[5]} \). It remains to show that \(p_v \neq p_w \) for all distinct \(v, w \in R \). This easily follows from the following claim: for every \(v \in R \) we have that the endpoint \(w \) of the path \(p_v \), different from \(v \), satisfies

\[
d_S(w) < d_S(v).
\]

Thus if \(p_v = p_w \) for some \(v \neq w \) then by the previous claim \(d_S(w) < d_S(v) \) and \(d_S(w) > d_S(v) \), which is clearly not possible. Therefore, in order to finish the proof of the exercise it suffices to prove the claim.

Let us consider some vertex \(v \in R \) such that \(d_S(v) = i \), for some \(i > 0 \). We first prove that \(P(v, v_1) = (v = p_1, \ldots, p_k = v_1) \) is such that \(d_S(p_j) \geq d_S(p_{j+1}) \) for every \(j \in [k-1] \), with equality if and only if \(d_S(p_{j+1}) = 0 \). Note that there exists a unique vertex \(v_t \in S \) such that \(d(v, v_t) = i \) and consider the path \(P(v, v_t) = (v = u_1, u_2, \ldots, u_k = v_t) \). It is easy to see that along this path we have \(d_S(u_j) < d_S(u_{j+1}) \) for every \(j \in [k-1] \). Therefore, the path \((v = u_1, \ldots, u_k = v_t, v_{t-1}, \ldots, v_1) \) is a path from \(v \) to \(v_1 \) and it satisfies the desired property. In the similar way we deduce that \(P(v, v_{q+1}) \) satisfies the same property. Therefore, since \(p_v \) is a subpath of either \(P(v, v_1) \) or \(P(v, v_{q+1}) \) and \(d_S(v) > 0 \), we have that the endpoint \(w \) of \(p_v \), different from \(v \), satisfies \(d_S(w) < d_S(v) \). This finishes the proof of the claim.