Graphs and Algorithms

Exercise 1 (Real matrices)

Let M be a matrix as stated in the exercise and consider the bipartite graph $G = (V,E)$ with

$$V := \{r_i\}_{i=1}^n \cup \{c_i\}_{i=1}^n \quad \text{and} \quad E := \{(r_i, c_j) \mid m_{i,j} \geq 1/n^2\}.$$

The main observation is that if G contains a perfect matching then there exists a desired permutation. To see that, let us assume that $P = \{e_1, \ldots, e_n\}$ is a subset of the edges of G which form a perfect matching, with $e_i = \{r_i, c_j\}$. Then setting $\pi(i) := j_i$ satisfies the desired properties: since P is a matching we have that π is a bijection and $e_i \in E(G)$ implies $m_{i,j_i} \geq 1/n^2$.

We show that G contains a saturating matching for $\{r_i\}_{i=1}^n$ using Hall’s theorem. As partitions are of the same size, this implies the existence of a desired perfect matching. Let $S \subseteq \{r_i\}_{i=1}^n$ be an arbitrary subset. Then

$$\sum_{r_i \in S} \sum_{c_j \in \Gamma(S)} m_{i,j} = \sum_{r_i \in S} \left(\sum_{j=1}^n m_{i,j} - \sum_{c_j \in \Gamma(S)} m_{i,j} \right) > \sum_{r_i \in S} (1 - n/n^2) = |S|(1 - 1/n) \geq |S| - 1. \quad (1)$$

In the first inequality we used the fact that the elements of every row sum up to 1 and $c_j \notin \Gamma(S)$ (thus $c_j \notin \Gamma(r_i)$) implies that $m_{i,j} < 1/n^2$. The second inequality follows from trivial observation that $|S| \leq n$. On the other hand we have

$$\sum_{r_i \in S} \sum_{c_j \in \Gamma(S)} m_{i,j} = \sum_{c_j \in \Gamma(S)} \sum_{r_i \in S} m_{i,j} \leq \sum_{c_j \in \Gamma(S)} \sum_{i=1}^n m_{i,j} = |\Gamma(S)|, \quad (2)$$

where we simply used the fact that the elements of every column sum up to 1. Finally, from (1) and (2) we have

$$|S| - 1 < \sum_{r_i \in S} \sum_{c_j \in \Gamma(S)} m_{i,j} \leq |\Gamma(S)|,$$

or equivalently $|S| \leq |\Gamma(S)|$. Therefore, we have proven that G satisfies Hall’s condition which, together with previous observations, finishes the proof of the exercise.
We define \(f \) as
\[
\text{The proof relies on the following claim.}
\]
we can assume that
\[
\text{Therefore we know }
\]
\(a \) connects
\[
\text{Part (i).}
\]
Let \(S \subseteq V \) be an arbitrary subset of vertices with \(|S| = 2k - 2 \). We will prove that \(S \) is not a separating set in \(G \) and as \(S \) is chosen arbitrarily this means that \(G \) is \((2k - 2)\)-connected.
Suppose that \(G[V \setminus S] \) is disconnected and let \(x \) and \(y \) be two vertices from different components of \(G[V \setminus S] \). Let \((a_1, b_1), \ldots, (a_{k-1}, b_{k-1}) \) be arbitrary pairing of vertices in \(S \). As \(G \) is \(k \)-linked we know that for a set of pairs \(\{(x, y), (a_1, b_1), \ldots, (a_{k-1}, b_{k-1})\} \) we can find \(k \) vertex disjoint paths connecting each pair. In particular there is a path between \(x \) and \(y \) which avoids set \(S \). However, this is not possible as \(x \) and \(y \) are in separate components in \(G[V \setminus S] \).
\[
\text{Part (ii).}
\]
Let \(X = \{(a_1, b_1), \ldots, (a_k, b_k)\} \) an arbitrary set with all elements being vertices from \(G \) and \(a_i \neq b_i \) for all \(i \in [k] \), i.e. \(X \in \binom{V}{2}^k \). We say that \(X \) is pseudo \(k \)-linked if there exist \(k \) internally vertex disjoint paths \(P_1, \ldots, P_k \), where \(P_i \) connects \(a_i \) to \(b_i \) and avoids all vertices \(a_j \) and \(b_j \) which are different from \(a_i \) and \(b_i \).

The proof relies on the following claim.
\[
\text{Claim 1. Let } X = \{(a_1, b_1), \ldots, (a_k, b_k)\} \text{ be an arbitrary element of } \binom{V}{2}^k. \text{ Let us define a function } f: \binom{V}{2}^k \to \mathbb{N} \text{ in the following way}
\]
\[
f(X) := \left| \bigcup_{i=1}^{k} (a_i \cup b_i) \right|
\]
and suppose \(f(X) \leq 2k - 1 \). If for all \(Y \in \binom{V}{2}^k \) with \(f(Y) > f(X) \) it holds that \(Y \) is pseudo \(k \)-linked, then \(X \) is pseudo \(k \)-linked.

Proof of the claim. Assume that for all \(Y \in \binom{V}{2}^k \) with \(f(Y) > f(X) \) it holds that \(Y \) is pseudo \(k \)-linked.
As \(f(X) < 2k \) there must exist different \(i \) and \(j \) such that \(\{a_i, b_i\} \cap \{a_j, b_j\} \neq \emptyset \) and let \(v \) be an arbitrary element of \(\{a_i, b_i\} \cap \{a_j, b_j\} \). Without loss of generality we can assume that \(v = a_i \). As the graph \(G \) is \((2k - 1)\)-connected we know that \(\delta(G) \geq 2k - 1 \). In particular \(\deg(v) \geq 2k - 1 \) and therefore there exists a vertex \(w \in N(v) \setminus (\bigcup_{i=1}^{k} (a_i \cup b_i)) \).

We define \(X' \) in the following way
\[
X' = (X \setminus (a_i, b_i)) \cup (w, b_i).
\]
By the construction of \(X' \) and our choice of \(w \) we know that \(f(X') > f(X) \).
Therefore we know \(X' \) is pseudo \(k \)-linked. In other words, there exist \(k \) vertex disjoint paths \(P_1, \ldots, P_k \) where \(P_i \) connects \(a_i \) to \(b_i \) and avoids all vertices \(a_j \) and \(b_j \) which are different from \(a_i \) and \(b_i \). As \(v \) is already a member of some pair from \(X' \) we know that it doesn’t appear as an internal vertex in any of the paths \(P_1, \ldots, P_k \). Moreover, as \(w \) is a unique vertex in \(X' \) it doesn’t appear in any
As for sets $X \in \binom{V}{2}^k$ with $f(X) = 2k$ we directly have that X is pseudo k-linked, by using the Claim 1 we have that all $X \in \binom{V}{2}^k$ are pseudo k-linked, which concludes the proof.

Exercise 3 (Strong Hall’s condition)

Throughout the proof, whenever we refer to a graph G we assume that it is a bipartite graph with partitions A and B. We call a subset of vertices $S \subseteq A$ critical if $|\Gamma(S)| = \sigma(G) + |S|$.

Part (i).

Let $X, Y \subseteq A$ be two critical subsets with a non-empty intersection, i.e. $X \cap Y \neq \emptyset$. We show that the union and intersection of two such critical sets are also critical.

First, from the inclusion-exclusion principle we have

$$|X \cap Y| + |X \cup Y| = |X| + |Y|.$$

(3)

Further, note that if $b \in \Gamma(X \cap Y)$ then $b \in \Gamma(a)$ for some $a \in X \cap Y$, thus $b \in \Gamma(X) \cap \Gamma(Y)$ and so $\Gamma(X \cap Y) \subseteq \Gamma(X) \cap \Gamma(Y)$. Together with a trivial observation that $\Gamma(X \cup Y) = \Gamma(X) \cup \Gamma(Y)$, we get

$$|\Gamma(X \cup Y)| + |\Gamma(X \cap Y)| \leq |\Gamma(X) \cup \Gamma(Y)| + |\Gamma(X) \cap \Gamma(Y)|$$

$$= |\Gamma(X)| + |\Gamma(Y)|,$$

(4)

where the equality again follows from the inclusion-exclusion principle. Finally, subtracting (3) from (4) we get

$$|\Gamma(X) \cup \Gamma(Y)| - |X \cup Y| + |\Gamma(X) \cap \Gamma(Y)| - |X \cap Y|$$

$$\leq |\Gamma(X)| - |X| + |\Gamma(Y)| - |Y| = 2\sigma(G).$$

Since $|\Gamma(X \cup Y)| - |X \cup Y| \geq \sigma(G)$ and $|\Gamma(X \cap Y)| - |X \cap Y| \geq \sigma(G)$ (from the definition of $\sigma(G)$ and the fact that $X \cap Y \neq \emptyset$) it follows that both $X \cup Y$ and $X \cap Y$ are critical.

Part (ii)

Let G be as stated in the exercise. Consider an arbitrary vertex $v \in A$. Our goal is to show that $\deg(v) = \sigma(G) + 1$. Observe that it trivially follows from the definition of $\sigma(G)$ that $\deg(v) \geq \sigma(G) + 1$. Thus it remains to show the upper bound.

It follows from the edge-minimality of G (property described in the exercise) that for every vertex $u \in \Gamma(v)$ we have $\sigma(G_u) < \sigma(G)$, where G_u is obtained from G by deleting the edge $\{v, u\}$. Let us consider an arbitrary vertex $u \in \Gamma(v)$ and let

$$3$$

$X_u \subseteq A$ be a critical set in G_u. Then $v \in X_u$ as otherwise $\Gamma_G(X_u) = \Gamma_{G_u}(X_u)$ since no edge touching X_u was removed, thus

$$|\Gamma_{G_u}(X_u)| = |\Gamma_G(X_u)| = |X_u| + \sigma(G) > |X_u| + \sigma(G_u)$$

contradicting the choice of X_u. Further, note that $|\Gamma_G(X_u)| \leq |\Gamma_{G_u}(X_u)| + 1$ since we removed exactly one edge touching vertices in X_u, namely vertex v.

On the other hand, since X_u is critical in G_u we have

$$|\Gamma_{G_u}(X_u)| = \sigma(G_u) + |X_u| < \sigma(G) + |X_u| \leq |\Gamma_G(X_u)|.$$

Therefore, we can conclude that $|\Gamma_G(X_u)| = |\Gamma_{G_u}(X_u)| + 1$ and thus $u \notin \Gamma(X_u \setminus \{ v \})$. Since $\sigma(G_u)$ and $\sigma(G)$ are integers we can have that X_u is critical in G.

To summarize, for each $u \in \Gamma(v)$ there exists a set $X_u \subseteq A$ such that X_u is critical in G, contains the vertex v and $u \notin \Gamma(X_u)$. It follows now from the part (i) of the exercise that

$$S := \bigcap_{u \in \Gamma(v)} X_u$$

is a critical set in G (as it is non-empty intersection of critical sets). Therefore

$$|\Gamma(S)| = \sigma(G) + |S| \text{ and } \Gamma(S \setminus \{ v \}) \cap \Gamma(v) = \emptyset. \text{ If } S = \{ v \} \text{ then we are done as we have } \deg(v) = \sigma(G) + 1. \text{ Otherwise, we have } S \setminus \{ v \} \neq \emptyset \text{ and }$$

$$|\Gamma(S \setminus \{ v \})| = |\Gamma(S)| - |\Gamma(v)| = \sigma(G) + |S| - \deg(v).$$

As $|\Gamma(S \setminus \{ v \})| \geq \sigma(G) + |S| - 1$, from the above equality we get

$$\sigma(G) + |S| - 1 \leq \sigma(G) + |S| - \deg(v)$$

and so $\deg(v) \leq 1 \leq \sigma(G) + 1$. Since v is an arbitrary vertex, this finishes the proof.

Part (iii)

We first prove that if $\sigma(G) \geq 1$ then there exists a spanning forest $F \subseteq G$ such that $\deg_F(v) = 2$ for every $v \in A$. Let $F \subseteq G$ be a spanning subgraph (i.e. on the same set of vertices as G) such that $\sigma(F) = 1$ and F is edge-minimal. In other words, F is such that for every graph G' obtained from F by removing a single edge we have $\sigma(F) > \sigma(G')$. Note that such F can be obtained from G by removing edges until it satisfies the property.

Using part (iii) of the exercise, we have $\deg_F(v) = 2$ for every $v \in A$. Therefore, it remains to prove that F is a forest. Assume towards the contradiction that F contains a cycle $C = (v_1, \ldots, v_t, v_1)$. Since F is a subgraph of the bipartite graph, C is of even length and since the vertices have to alternate between sets A and B we have $|C \cap A| = |C \cap B|$. Furthermore, this also implies that every vertex $v \in C \cap A$ has degree 2 inside $C \cap B$. Thus $\Gamma(C \cap A) = C \cap B$ and so $|\Gamma(C \cap A)| = |C \cap A|$, contradicting the fact that $\sigma(G) \geq 1$. Therefore, F is acyclic and thus a forest.

Exercise 4 (Hypergraph coloring)

Before we prove the lemma, let us see how it implies the existence of a desired coloring. Let $H = (S, E)$ be a hypergraph such that for every (non-empty)
subset of hyperedges \(E' \subseteq E \) we have
\[
|E'| < |\cup_{e \in E'} e|.
\] (⋆)

Then, according to the lemma, there exists a forest \(G = (S, E_g) \) with the property that for every hyperedge \(e \in E \) there exist two distinct members \(a_e, b_e \in e \) such that \(\{a_e, b_e\} \in E_g \). Since \(G \) is a forest, it contains no cycles – and thus no odd cycles, hence we know that \(G \) is also a bipartite graph. Let us denote partitions of \(G \) with \(R \) and \(B \) (note that the partitions might not be uniquely determined, in which case we consider an arbitrary one) and consider the coloring of \(H \) which assigns red to vertices in \(R \) and blue to vertices in \(B \). It is easy to see that such a coloring is rainbow: for every hyperedge \(e \in E \) it follows from \(\{a_e, b_e\} \in E_g \) that \(e \) contains two vertices which belong to different partitions of \(G \) and thus were assigned a different color.

Therefore, it remains to prove the lemma.

Proof of the lemma. Let \(H = (S, E) \) be a graph which satisfies property (⋆). Consider the incidence graph \(I = (E \cup S, E_I) \) of \(H \), i.e. a bipartite graph in which one partition corresponds to the set of hyperedges and the other to the set of vertices, with
\[
E_I := \{\{e, s\} \mid e \in E, s \in S, s \in e\}.
\]
From the definition of \(I \), for every \(E' \subseteq E \) we have
\[
\Gamma(E') = \{s \in S \mid \exists e \in E', s \in e\} = \cup_{e \in E'} e,
\]
thus it follows from (⋆) that \(|\Gamma(E')| \geq |E'| + 1 \). In the terminology of Exercise 3, we have that \(\sigma(I) \geq 1 \). Therefore, we can apply Exercise (3.iii) to obtain a spanning forest \(F \subseteq I \) such that \(\deg_F(e) = 2 \) for every \(e \in E \). We claim that the graph \(G = (S, E_g) \), with
\[
E_g := \{\Gamma_F(e) \mid e \in E\},
\]
satisfies the desired properties.

First, it follows from \(\deg_F(e) = 2 \) that \(G \) is indeed a graph, i.e. every edge has exactly two endpoints. Furthermore, since \(\Gamma_I(e) = e \) we have \(\Gamma_F(e) \subseteq e \) and thus for every hyperedge there exists two distinct vertices, namely those specified by \(\Gamma_F(e) \), which are forming an edge in \(G \). Finally, it remains to show that \(G \) is a forest. Assume towards the contradiction that there exists a cycle \(C = (v_1, \ldots, v_k, v_{k+1}) \) in \(G \), where \(v_1 = v_{k+1} \). Then for every pair of consecutive vertices \((v_i, v_{i+1}) \), since they form an edge in \(G \) we know that there exists a hyperedge \(e_i \in E \) such that \(\{v_i, v_{i+1}\} = \Gamma_F(e_i) \). But then \(C' = (v_1, e_1, v_2, \ldots, v_k, e_k, v_{k+1}) \) is a cycle in \(F \), which is a contradiction with the fact that \(F \) is a forest. Therefore, we can conclude \(G \) is acyclic. This finishes the proof of the claim. \(\square \)