Graphs and Algorithms

Exercise 1 (Odd common neighbourhood)
As we know from the lecture, a graph $G = (V, E)$ is Eulerian if and only if every vertex $v \in V$ has an even degree. Thus, for a graph G as given in the exercise, it suffices to prove that every vertex has an even degree.

Let $a \in V$ be an arbitrary vertex. If $V = \{a\}$ then we are already done. Otherwise, there exists a vertex $b \in V \setminus \{a\}$ and $|N_G(a) \cap N_G(b)|$ is an odd number. But then $N_G(a) \cap N_G(b) \neq \emptyset$ and so $N_G(a) \neq \emptyset$. Let us now consider the graph $G_a := G[N_G(a)]$. It is easy to see that for any vertex $b \in V(G_a)$ we have that $N_{G_a}(b) = N_G(a) \cap N_G(b)$ and therefore every vertex in G_a has an odd degree (in G_a). As every graph has an even number of vertices with an odd degree, it follows that $|V(G_a)| = |N_G(a)|$ is an even number thus the vertex a has an even degree in G.

Exercise 2 (Hamilton cycles and paths)
Let us first prove Lemma 1 from the exercise.

Proof of Lemma 1. Let (v_1, \ldots, v_n) be an ordering of the vertices as given in the statement of the lemma. We first show that G is connected. We prove by induction on i that the vertex $v_i \in G$ belongs to a component with more than $n/2$ vertices. This implies that G is connected similarly as in the proof of Dirac’s theorem. For $i \in \{n/2, \ldots, n\}$ it follows from the fact that $\deg(v_i) \geq n/2$ that the component of v_i contains at least $n/2 + 1$ vertices. Assume further that the claim holds for all vertices v_j with $j < i$, for some $i \leq n/2$, and consider the vertex v_i. By the assumption we have $\deg(v_i) \geq i + 1$, thus there exists an index $i' > i$ such that $\{v_{i'}, v_i\} \in E(G)$. But then, by the induction hypothesis, vertex v_i belongs to a component with at least $n/2 + 1$ vertices, thus the same holds for v_i.

We now show that G is Hamiltonian. Let us consider a longest path $P = (v_{i_1}, \ldots, v_{i_k})$ in G. We will show that there exists a cycle C which covers all the vertices of P. Observe that if P is not a Hamiltonian path, this gives a cycle of length $k < n$. Since the graph is connected, there exists an edge with one endpoint in $V(C)$ and the other in $V(G) \setminus V(C)$ thus giving a path larger than P. As this is a contradiction with the choice of P, the cycle C has to be Hamiltonian. Now let us prove that such cycle always exists.

First, observe that $N(v_{i_1}), N(v_{i_k}) \subseteq V(P)$ as otherwise we could extend P, contradicting its choice. Further, without loss of generality we can assume that $i_1 < i_k$. If $i_1 \geq n/2$, then both endpoint have degree at least $n/2$ and the proof
We do a case distinction based on whether $i_1 < n/2$ and consider the set A of the predecessors of the neighbors of v_i on P, i.e.

$$A := \{i_1 \mid v_{i_1+1} \in N(v_i)\},$$

Note that $|A| \geq i_1 + 1$, thus there exists some $i_2 > i_1$ such that $i_2 \in A$. We can now "rotate" the path P around v_i to get a new path P',

$$P' = (v_i, v_{i_2}, v_1, v_{i_2+1}, v_{i_3+2}, \ldots, v_{i_k}).$$

Observe that the other endpoint of P' is the same as in P. Since the index of the "smaller" endpoint of the path increased by at least 1 and the other endpoint remained the same, by repeating this procedure at most n times we have that $\min\{i_1, i_k\} \geq n/2$. But then the proof again follows from the proof of Dirac’s theorem, thus there exists a desired cycle.

Let us now turn to the part (b) of the exercise. Let $G = (V, E)$ be a graph on n vertices as given in the exercise and consider two arbitrary distinct vertices $a, b \in V$. We show that the graph G' created from G by adding a new vertex x and connecting it to a and b, i.e.

$$G' := (V \cup \{x\}, E \cup \{a, x\} \cup \{b, x\})$$

is Hamiltonian. Since the vertex x has degree exactly 2 in G', by removing it from a Hamiltonian cycle we get a Hamiltonian path which starts in one of the neighbors of x and ends in the other. As the neighbors of x are precisely vertices a and b, this finishes the proof.

We do a case distinction based on whether n is even or odd. Let us first assume that n is even. Then every vertex $v \in V$ has degree at least $n/2 + 1$ in G'. Let (u_1, \ldots, u_{n+1}) be an ordering of vertices in G' such that $u_1 = x$ and all other vertices are ordered arbitrarily. We claim that such an ordering satisfies the condition of Claim 1. Indeed, for $i = 1$ we have $d_{G'}(u_1) = 2$ as desired. For $i \in \{1, \ldots, n/2\}$ (note that $n/2 = \lceil(n+1)/2\rceil$) we have $d_{G'}(u_i) \geq n/2 + 1 \geq i + 1$. Similarly, for $i \in \{n/2 + 1, \ldots, n + 1\}$ we have $d_{G'}(u_i) \geq n/2 + 1 > (n + 1)/2$, as desired. Therefore, by Claim 1 the graph G' is Hamiltonian.

Let us now assume that n is odd. Then every vertex $v \in V$ has degree at least $(n + 1)/2$ and, moreover, vertices a and b have degree at least $(n + 1)/2 + 1$. Let now (u_1, \ldots, u_{n+1}) be an ordering of the vertices in G' such that $u_1 = x$, $u_{(n+1)/2} = a$ and all other vertices are ordered arbitrarily. Similarly as in the previous case, the idea is to apply Claim 1 to deduce that G' is Hamiltonian. Again, for $i = 1$ it holds that $d_{G'}(u_1) = 2$. For $i \in \{1, \ldots, (n + 1)/2 - 1\}$ we have $d_{G'}(u_i) \geq (n + 1)/2 > i + 1$. For $i = (n + 1)/2$ we have $u_i = a$ and thus $d_{G'}(u_i) \geq (n + 1)/2 + 1 \geq i + 1$. Finally, for $i \in \{(n + 1)/2, \ldots, n + 1\}$ we have $d_{G'}(u_i) \geq (n + 1)/2$ and therefore we can apply Claim 1. This finishes the proof.

Exercise 3 (Planar graphs with large girth)

If G is a forest, one can easily check that the claim holds. Therefore let us assume that G contains at least one cycle.
Let $V' \subseteq V$ be a set of vertices which are not part of any cycle and let

$$E' := \{ e \in E \mid e \text{ incident to some } v \in V' \}.$$

As each edge in E' is incident to some $v \in V'$ the set of edges E' cannot form a cycle. Therefore E' forms a forest and hence $|E'| \leq |V'| - 1$. Note that set of edges in $G[V \setminus V']$ is exactly $E \setminus E'$.

We know that every edge of $G[V \setminus V']$ is a part of a cycle and moreover it is a part of exactly two cycles. On the other hand, each cycle contains at least five edges. Therefore, if by F we denote the number of cycles in $G[V \setminus V']$ by double counting we have

$$5F \leq 2|E \setminus E'|.$$

By using the fact that $|V \setminus V'| - |E \setminus E'| + F = 2$ from Euler’s formula and the previous inequality we get

$$10 - 5|V \setminus V'| + 5|E \setminus E'| \leq 2|E \setminus E'|,$$

which after simple algebraical manipulations gives us

$$|E \setminus E'| \leq \frac{5|V \setminus V'|}{3} - \frac{10}{3}.$$

Next, add $\frac{5|V'|}{3}$ to both sides of the last equation to obtain

$$\frac{5|V \setminus V'| + 5|V'|}{3} - \frac{10}{3} = \frac{5|V|}{3} - \frac{10}{3} \geq \frac{5|V'|}{3} + |E \setminus E'| \geq \frac{5|E'| + 1}{3} + |E \setminus E'| \geq |E|.$$

This is exactly what we wanted to prove.

Exercise 4 (Path removal)

Part (i)

Let $P = v_1, v_2, \ldots, v_\ell$ be the longest path and assume $\ell \leq k$. As $\deg(v_\ell) \geq k$ there exists a vertex $w \in N(v_\ell) \setminus \{v_1, \ldots, v_{\ell-1}\}$. Thus Pw forms a longer path than P which is a contradiction. Therefore we have $\ell > k$.

Part (ii)

Assume $G[V \setminus \{v_1, \ldots, v_k\}]$ is disconnected. Let K be a component of $G[V \setminus \{v_1, \ldots, v_k\}]$ which doesn’t contain vertices v_{k+1}, \ldots, v_ℓ. Such K exists as vertices v_{k+1}, \ldots, v_ℓ are contained in one component in $G[V \setminus \{v_1, \ldots, v_k\}]$. Furthermore, since G is connected there exists a vertex $x \in K$ such that $\{x, v_i\} \in E$ for some $i \in [k]$. Let Q be a maximal path in K with x as an endpoint and let us denote by y the other endpoint of Q. If Q is of length at least k then path $v_\ell \ldots v_k \ldots v_iQ$ is longer than P which is not possible. Therefore the path Q is of length $t < k$. If $\deg_{G'[K]}(y) \geq t + 1$ then by the same argument as in Part (i), we could extend the path Q which contradicts its maximality. Therefore we have that $\deg_{G'[K]}(y) \leq t < k$. On the other hand, as $\delta(G) \geq k$ that means
that by removing set \(\{v_1, \ldots, v_k\} \) we have deleted at least \(k - t \) edges from \(y \) to \(\{v_1, \ldots, v_k\} \). Let \(v_j \in \{v_1, \ldots, v_k\} \) be a vertex with smallest index such that \(\{y, v_j\} \in E \). By the previous argument we know that \(j \leq t + 1 \). However the path \(Qv_j \ldots v_k \ldots v_\ell \) is of length at least

\[
\ell - j + t + 1 \geq \ell - (t + 1) + t + 1 = \ell,
\]

which is a path longer than \(P \).