
Student ID: Algorithmen & Datenstrukturen page 1

Instructions for the exam Algorithmen & Datenstrukturen

Conduct

• Duration and weight: The exam takes 4 hours. During this time, you should solve both
the theoretical and the programming tasks. Both parts are designed for 2 hours each and are
weighted equally. Nevertheless you can spend more or less time per part, if you like. We highly
recommend you to start with the programming part and to continue with the theoretical part
after no more than 2 hours.

• Early hand in: Due to the structure of this exam, it is not possible to hand in early.

Exam conditions

• Disturbance: Report any circumstances that disturb you during the exam immediately.

• Disciplinary Code: Dishonest behaviour can entail disciplinary measures according to the
Disciplinary Code of ETH Zurich.

• Clarifications: During the exam, any questions regarding the content of the exam are only
answered through the Judge (see point 4 of the technical guide). This also applies to the
theoretical tasks.

Logistics

• Allowed material: Besides pens, dictionaries and a simple watch no extra material is allowed
(no devices that are capable of communication, programmable or used to save data). Before
the start of the exam, all forbidden items have to be put away. All electronic devices, especially
mobile phones, smart watches and password flash drives, have to go to your luggage.

• Luggage and jackets have to be stored on the side of the room and can not go to your desk.
We cannot guard your luggage, so you store it there at your own risk. In order to reduce that
risk we advise you to not bring any valuables to the exam. Put a nametag onto your bag to
prevent a mix-up.

• Legi-check: Put your legi (ETH-card) clearly visible on your desk. At the check after the
start of the exam, we will also ask you to open the submissions page on the judge. Therefore
please perform the steps of the technical guide shortly after the beginning of the exam.

• Food and drinks at your desk in a reasonable fashion are allowed. So you may bring a
small amount of food and drinks, provided that (1) they do not disturb others (smell/sound),
(2) dry food only (nothing liquid, greasy, etc.), (3) beverages only in closed and resealable
containers (that you close whenever you don’t drink), and (4) you are very careful and clean
things up afterwards.

• Earplugs: Only Ohropax (or similar earplugs) are allowed, no earmuffs, no headphones.

• Restroom: If you would like to visit a restroom during the exam, please raise your hand. An
assistant will accompany you. In the Schleusenraum it is not possible to use the restroom.
We recommend to go to the toilet ahead of the Schleuse if you are assigned to the second run.

Student ID: Algorithmen & Datenstrukturen page 2

Programming part (computer exam)

• nethz password: To log in to the judge, you need your nethz account. Please ensure that
you can remember your login credentials.

• Best submission counts: Just like with the programming tasks during the semester, you
can submit to each programming task as often as you like. The best submission counts per
task. Only what you submit to the judge counts.

• Do not turn it off! You may not turn off your computer for any reason, also not near the
end of the exam. You risk loosing all of your files!

• System issues: If any system error occurs immediately raise your hand and do not click on
any error messages.

• Java libraries: Formally, you can only use the objects, functions, etc. from java.lang.*
and not from other packages. The package java.lang contains all the objects available by
default, for example Math, Integer, String, System, Double, Boolean, etc., and you can use
these freely (e.g. Math.max() or Integer.MAX VALUE are fine).

On the other hand, importing or using other packages is forbidden, e.g. you may not use
java.util.*, java.io.* etc. Note this also forbids the Java collections. The module
java.util.Scanner used to read the input in the provided templates is the only allowed
exception.

Also note that this restriction is not checked by the judge on submission, but will be checked
after the exam and penalized.

This is not to make your task any harder - on the contrary (since it means that you do not
need to know all of the forbidden things). It is just to limit the solutions to only the things
that you saw and used throughout the course.

Theoretical part (paper exam)

• Please write your student number on every sheet.

• Use a new sheet for every problem or write your solutions directly onto the task sheet (espe-
cially for task T1).

• You are not allowed to use your own paper. We will provide enough paper for you.

• Please write legibly with blue or black, non-erasable ink. We will only grade what we can
read. Pencils are not allowed.

• You may only give one solution for each problem. Invalid attempts need to be clearly crossed
out. Formulate your solutions comprehensibly.

• If you use algorithms and notation other than that of the lecture, you need to briefly explain
them in such a way that the results can be understood and checked.

• At the end of the exam, put all sheets except for the one with your nametag into the envelope
and seal it.

Student ID: Algorithmen & Datenstrukturen page 3

Programming Task P1.
/ 20 P

Enrolment Key: blumenwiese

Submission: see Section 3 of the Technical Guide

Implementing Mergesort

Your task is to implement the merging of two sorted subsequences in the mergesort algorithm. Most
of the implementation of the mergesort algorithm is already provided by the template (reading the
input, recursive calls, output). Your task is to complete the code of the function mergeSort():
The recursive calls to mergeSort() return two sorted arrays L and R, and your task is to merge
these two arrays L and R into a sorted array B which is then returned. See the template for details.

To solve the task it is sufficient to replace the TODO comment in the template with your Java code.
We strongly recommend not to change the rest of the template (even though it is not forbidden).
Note that the mergeSort() function outputs some information that lets the judge verify that
mergesort is running as intended and this output needs to stay exactly the same.

The numbers being sorted are integers between −1 000 000 and 1 000 000. Numbers may occur more
than once, and you need to preserve all the occurrences. The array to be sorted may contain up to
50 000 elements.

Example The following diagram illustrates mergesort on the input 2 2 1 2 -1 -3 4.

2 2 1 2 -1 -3 4

input:

2 2 1 2 -1-3

221 2 -1-3 4

221 2-1-3 4output:

2 2 1 2 -1 -3

2 2 1 2 -1 -3 4

2 2 1 2 -1 -3 4

sp
li
tt
in
g

m
er
gi
n
g

4

4

Student ID: Algorithmen & Datenstrukturen page 4

Grading You may get up to 100 judge points. The program should implement every merge
operation of k elements in time O(k). Submit only your Main.java.

Instructions For this exercise, we provide a program template as an Eclipse project in your
workspace, and the template already implements most of the functionality. Your task is to complete
the code of the function mergeSort().

As usual, the project also contains data for your local testing and a Judge.java program that
runs your Main.java on all the local tests – just open and run Judge.java in the project. The
local test data are different than the data that are used in the online judge.

The input and output are handled by the template – you should not need the rest of this text.

Input The first line of the input contains only the number of test cases.

Each test consists of two lines. The first line contains n, the number of integers to sort, and the
second line contains n integers to be sorted.

Output Upon every return from mergeSort() of at least 2 elements, the length of the array,
the smallest and largest value are printed on a separate line, separated by spaces (calls to sort 1
element do not print anything.) After sorting the input of a test case, the sorted array is printed
on a single line with numbers separated by spaces.

Example input (for the example above):

1
7
2 2 1 2 -1 -3 4

For the example output, see the file testdata/example.out in the project.

Student ID: Algorithmen & Datenstrukturen page 5

Space for your notes. These will not be graded. Only what was submitted to
the judge counts for this exercise.

Student ID: Algorithmen & Datenstrukturen page 6

Student ID: Algorithmen & Datenstrukturen page 7

Programming Task P2.
/ 20 P

Enrolment Key: blumenwiese

Submission: see Section 3 of the Technical Guide

Cell Towers

A brand-new highway was built across the country, and the drivers already complain about poor
cell phone signal on the road. Your task is to build new cell towers to provide full coverage of the
road, and to do that at the smallest cost.

The road is perfectly straight, L kilometers long, starting at km 0 and ending at km L, and initially
has no cell towers. Every built cell tower covers R kilometers of the road in each of the two directions.
A list of n possible tower locations and their costs is provided. The i-th possible tower location is
di kilometers from the start of the road and costs ci to build, i = 0, . . . , n− 1. The possible tower
locations are ordered such that 0 ≤ d0 < d1 < d2 < · · · < dn−1 ≤ L. All these locations di are
different.

The inputs satisfy 1 ≤ L ≤ 1 000 000, 1 ≤ R ≤ 1000, 1 ≤ n ≤ 200 000, 1 ≤ ci ≤ 1000. The sum of
all the costs does fit into a variable of type int. We guarantee that covering the entire road with
a signal is possible.

Note that approximate (almost-optimal) solutions and “greedy algorithms” will likely not get any
points – only the optimal solution is accepted. We recommend to design a 1-dimensional dynamic
program.

Example The following picture shows an example with L = 22, R = 3 and n = 9, the squares are
possible tower locations on the road, the numbers below them are their costs and the arrows indicate
their covering range. An optimal solution has cost 37 (using towers with costs 6 + 3 + 15 + 6 + 7).
The input data may be found below.

0 5 10 15 20 22

6

8

3 15 4

6
5

5
7

Student ID: Algorithmen & Datenstrukturen page 8

Grading You may get up to 100 judge points. To get full points, your program should run in
time O(nR) but slower solutions may get partial points. Submit only your Main.java.

Instructions For this exercise, we provide a program template as an Eclipse project in your
workspace that helps you reading the inputs and writing the output.

As usual, the project also contains data for your local testing and a Judge.java program that
runs your Main.java on all the local tests – just open and run Judge.java in the project. The
local test data are different and generally smaller than the data that are used in the online judge.

The input and output are handled by the template – you should not need the rest of this text.

Input The first line of the input contains only the number of test cases.

The first line of each test case contains integers L, R and n, separated by spaces. The second line of
each test case contains the possible locations of the towers as n integers separated by spaces. The
third line of each test case contains the cost of the n locations as integers separated by spaces.

Output Output the cost of an optimal tower placement as an integer for each test case on a
separate line.

Example input (for the example above):

1
22 3 9
0 2 4 10 13 15 18 20 22
6 8 3 15 5 6 4 7 5

Example output:

37

Student ID: Algorithmen & Datenstrukturen page 9

Space for your notes. These will not be graded. Only what was submitted to
the judge counts for this exercise.

Student ID: Algorithmen & Datenstrukturen page 10

Student ID: Algorithmen & Datenstrukturen page 11

Theory Task T1.
/ 16 P

Notes:

1) In this problem, you have to provide solutions only. You should write them directly on this
sheet.

2) We assume letters to be ordered alphabetically and numbers to be ordered ascendingly, ac-
cording to their values.

a) Perform two iterations of Insertion Sort on the following array. The array has already been/ 1 P

sorted by previous iterations of this algorithm up to the double bar.

3 15 20 32 19 5 25 18 21 17 16 45

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

b) Provide the number of necessary key comparisons when the elements T, S, I and L are accessed/ 1 P

(in this order) and the list is reorganized using the Move-to-Front rule:

S → I → L→ E → N → T

Number of key comparisons:

Student ID: Algorithmen & Datenstrukturen page 12

c) Insert the keys 17, 19, 4, 26 in this order into the hash table below. Use double hashing with/ 1 P

the hash function h(k) = k mod 11, and use h′(k) = 1 + (k mod 9) for probing (to the left).

15 6 18 21

0 1 2 3 4 5 6 7 8 9 10

d) Provide a topological sort of the graph below./ 1 P

A B

C D E

F

Topological sort:

, , , , , .

e) Provide for the following graph G its adjacency matrix. Compute its reflexive, transitive/ 1 P

closure and provide the corresponding adjacency matrix.

Graph G:

A B

C D

Adjacency matrix of G:

A

A

B

B

C

C

D

D

Adjacency matrix of the reflexive
and transitive closure of G:

A

A

B

B

C

C

D

D

Student ID: Algorithmen & Datenstrukturen page 13

f) It can happen that a depth-first search visits the vertices of a graph in the same order as a/ 1 P

breadth-first search. In the following graph, mark all starting vertices for which this is the
case, under the assumption that both traversals visit the neighboring vertices in alphabetically
increasing order.

A B C

D E F

g) Draw the binary search tree with the postorder traversal 1, 4, 3, 10, 7, 6./ 1 P

h) For each of the following statements, mark with a cross whether it is true or false. Every/ 2 P

correct answer gives 0.5 points, for every wrong answer 0.5 points are removed. A missing
answer gives 0 points. Overall the exercise gives at least 0 points. You don’t have to justify
your answer.

Heapsort is in-situ and stable. � True � False

In a Min-Heap the largest element is stored in a node without
successors.

� True � False

The height of a natural binary search tree is in O(log n)
where n denotes the number of keys stored in the tree.

� True � False

A directed graph is acyclic if and only if it can be sorted
topologogically.

� True � False

Student ID: Algorithmen & Datenstrukturen page 14

Which AVL tree results from inserting the key 4 into the following AVL tree and reestablishing/ 1 P

the AVL condition afterwards?

10

3

1 7

6 9

15

13

7

3

1 6

4

10

9 15

13

7

3

1 6

4

13

10

9

15

7

3

1 4

6

10

9 15

13

9

4

3

1

7

6

13

10 15

10

6

3

1 4

7

9

15

13

10

4

3

1

7

6 9

15

13

Student ID: Algorithmen & Datenstrukturen page 15

i) Consider the following recursive formula:/ 3 P

T (n) :=

{
5 · T (n/7) + 8 n > 1

3 n = 1

Specify a closed (non-recursive) form for T (n) that is as simple as possible, and prove its
correctness using mathematical induction. You may assume that n is a power of 7. Hence,
use n = 7k or k = log7(n).

Notice: For q 6= 1, we have
∑k

i=0 q
i = qk+1−1

q−1 .

Derivation (if required):

Closed and simplified form:

T (n) = T (7k) =

Proof by induction:

Student ID: Algorithmen & Datenstrukturen page 16

Proof by induction (continuation):

Student ID: Algorithmen & Datenstrukturen page 17

j) Specify for the following code fragment in Θ notation (as concisely as possible) how often the/ 1 P

function f is asymptotically invoked in dependency of n ∈ N. The function f does not invoke
itself. You do not need to justify your answer.

1 for(int i = 1; i <= 2∗n; i = i+5) {
2 for(int j = 1; j∗j <= n; j = j+1)
3 f();
4 for(int k = 1; k∗k < 1000; k = k+1)
5 f();
6 }

Number of invocations as con-
cisely as possible in Θ notation:

k) Specify for the following code fragment in Θ notation (as concisely as possible) how often the/ 1 P

function f is asymptotically invoked in dependency of n ∈ N. The function f does not invoke
itself. You do not need to justify your answer.

1 for (int i = 1; i < n; i = 2∗i) {
2 for (int j = n; j > 1; j = j/2)
3 f();
4 }

Number of invocations as con-
cisely as possible in Θ notation:

l) Specify an order for the functions below such that the following holds: If the function f is/ 1 P

left of the function g, then f ∈ O(g).

Example: The three functions n3, n7, n9 are already in a correct order, since n3 ∈ O(n7) and
n7 ∈ O(n9). (

n

3

)
, n!, 108, n

3
2 ,
√
n log n,

n

log3(n)
, 2n, 3

n
2 , log(n6)

Solution: , , , , , , , , .

Student ID: Algorithmen & Datenstrukturen page 18

Student ID: Algorithmen & Datenstrukturen page 19

Theory Task T2.
/ 12 P

King Minos instructs Daedalus to construct a maze to imprison the Minotaur. Daedalus presents
his maze with n fields and a given starting field as a drawing on gridded paper. In the following
figure you can see an example maze with n = 36 fields. The starting field is indicated by an S, and
the target field at the exit with a Z. We want to determine how fast the Minotaur can escape from
the given maze.

a) Model this problem as a shortest path problem:/ 4 P

– Describe how the maze can be represented as a graph such
that the following is true: The number of vertices on a
shortest path between two vertices representing the starting
and target field corresponds exactly to the smallest number
of fields that have to be visited for reaching the target field
Z.

– Indicate how many vertices and edges your graph has in
dependency of n.

– Name an algorithm of the lecture that solves the shortest
path problem for this graph as efficiently as possible. Also,
provide the running time as concisely as possible in Θ no-
tation.

Z
S

Example: In the example on the right the Minotaur has to visit at least 21 fields (including
the starting and the target field) to escape.

b) Various obstacles exist to complicate the escape. The time required to move from one field to/ 4 P

another changes from obstacle to obstacle. For two adjacent fields that are not separated by
a wall you are given the time that it takes to move from one field to another.

How can the modeling from task a) be adapted to compute, under consideration of the given
times, a fastest route to escape from the maze?

– Describe how the maze can be represented as a graph such
that the following is true: The length of a shortest path
between two vertices representing the starting and target
field corresponds exactly to the minimum time necessary
for reaching the target field Z.

– Indicate how many vertices and edges your graph has in
dependency of n.

– Name an algorithm of the lecture that solves the shortest
path problem for this graph as efficiently as possible. Also,
provide the running time as concisely as possible in Θ no-
tation.

Z

S5314
441

52
31251

2
21345

2912
445

3783
54593

22511

Example: In the example on the right one needs at least 44 time units to escape. The fastest
route is indicated in gray.

Student ID: Algorithmen & Datenstrukturen page 20

c) The Minotaur has the force to destroy exactly one inner wall of the maze (i.e. a wall for which/ 4 P

both adjacent fields are inside the maze).

Compute how many fields the Minotaur has to visit on his escape
at least, by modeling the problem as a shortest path problem.
Name an algorithm that solves this problem as efficiently as pos-
sible. Also, provide the running time as concisely as possible in
Θ notation.
Example: In the example on the right the Minotaur can destroy
the wall that is marked with an arrow, and has to visit only 7
fields to escape (and not 21 as in task a)).

←
Z

S

Subtask a)

• Definition of the graph (if possible, in words and not formal):

• Number of vertices and edges (as concisely as possible in Θ notation):

• Shortest path algorithm, as efficient as possible:

• Running time (as concisely as possible in Θ notation):

Student ID: Algorithmen & Datenstrukturen page 21

Subtask b)

• Definition of the graph (if possible, in words and not formal):

• Number of vertices and edges (as concisely as possible in Θ notation):

• Shortest path algorithm, as efficient as possible:

• Running time (as concisely as possible in Θ notation):

Student ID: Algorithmen & Datenstrukturen page 22

Subtask c)

• Modeling as a shortest path problem:

• Shortest path algorithm, as efficient as possible:

• Running time (as concisely as possible in Θ notation):

Student ID: Algorithmen & Datenstrukturen page 23

Theory Task T3.
/ 12 P

The longest baguette of the world has a length of l centimeters. We want to sell it as expensive as
possible. For this purpose it may be cut into pieces. Each piece of length li ∈ N can be sold to a
price pi ∈ N, for i ∈ {1, . . . , n}. We want to determine, how the baguette can be cut into pieces
such that the overall selling price is maximized. Of course, the sum of the lengths of all pieces may
not exceed the length of the baguette.

Example: You are given a baguette of length l = 121 cm, and we allow n = 3 different piece lengths,
namely l1 = 50 cm (with price p1 = 25), l2 = 26 cm (with price p2 = 14) and l3 = 20 cm (with
price p3 = 10). Then, ideally we sell three pieces of length 26 cm and two with length 20 cm, for
an overall price of 3 · 14 + 2 · 10 = 62.

a) Give a dynamic programming algorithm that obtains as input l and n as well as li and pi for/ 7 P

every i ∈ {1, . . . , n}, and that computes the maximum overall selling price. Hence, for the
example above the number 62 has to be calculated. Explain the following aspects in your
solution.

1) What is the meaning of a table entry, and which size does the DP table have?

2) How can the table be initialized, and how can an entry be computed from the values of
other entries?

3) In which order can the entries be computed?

4) How can the final solution be extracted once the table has been filled?

b) Describe how you can determine which partition leads to the maximum overall selling price./ 3 P

For the example above a best partition consists of three pieces of length 26 cm with price 14
each and of another two pieces of length 20 cm with price 10 each.

c) Provide the asymptotic running times of your algorithms for the subtasks a) and b), and/ 2 P

justify your answer.

Student ID: Algorithmen & Datenstrukturen page 24

Subtask a)

Size of the DP table / Number of entries:

Meaning of a table entry:

DP []:

Computation of an entry:

Computation order:

Computation of the maximum overall selling price:

Student ID: Algorithmen & Datenstrukturen page 25

Subtask b)

Determining the optimal partition:

Subtask c)

Running times (as concisely as possible in Θ notation) with justification:

Student ID: Algorithmen & Datenstrukturen page 26

Extra space. Please indicate clearly to which task your notes belong. Please
cross out all notes that you don’t want to be graded.

Student ID: Algorithmen & Datenstrukturen page 27

Student ID: Algorithmen & Datenstrukturen page 28

