
Stud.-Nummer: Algorithmen & Datenstrukturen Seite 1

Programming Task P1. / 20 P

Passwort für Einschreibung: asymptotic

Einreichung: https://judge.inf.ethz.ch/team/websubmit.php?cid=28784&problem=AVLAugme

AVL Tree Augmentation

Your task is to augment an AVL tree to support the following rank(x) operation:

rank(x) : Given an integer x, returns the number of values y ≤ x stored in the AVL tree.

Most of the implementation of the AVL tree is already provided by the template (reading the input,
inserting a new element, writing the output).

�e tree is stored as a group of Node objects. Each Node object v has �ve �elds:

parent: a pointer to the parent of v in the tree (or null if v is the root of the tree).

leftChild: a pointer to the le� child of v (or null if no such child exists).

rightChild: a pointer to the le� child of v (or null if no such child exists).

value: the integer value associated with v.

balanceFactor: the balance factor of v, i.e., the height of the subtree rooted at the right child of v
minus the height of the subtree rooted at the le� child of v.

Notice that for every pointer, leftChild, rightChild, or parent, from one vertex v to another vertex
u, there is a corresponding pointer from u to v. �e provided AVL tree implementation also contains
an additional pointer, named root, to the current root node of the tree (root is null when the tree is
empty).

To solve the task you will need to edit the provded code so that the rank(x) operation can be imple-
mented in O(log n) time, where n is the number of nodes in the AVL tree. �e asymptotic complexity
of the insert operation must remain unchanged.

�e values inserted are distinct integers between 0 and 1 000 000.

(Continues on the next page)

https://judge.inf.ethz.ch/team/websubmit.php?cid=28784&problem=AVLAugme


Stud.-Nummer: Algorithmen & Datenstrukturen Seite 2

Example

�e following �gure shows the structure of an AVL tree in which rank(5)=4 and rank(8)=6.

3

6

41

root

9

8

0

Grading You can get up to 20 judge points.�e program should implement the insertion and rank(x)
operations in O(log n) time per operation (with reasonable hidden constants), where n is the number
of nodes in the AVL tree. Less e�cient solutions can obtain up to 10 points.

Instructions For this exercise, we provide a program template as an Eclipse project in yourworkspace,
and the template already implements most of the functionality, exept for the modi�cations needed to
support the rank(x) operation.

�e project also contains data for your local testing and a Judge.java program that runs your Main.java
on all the local tests – just open and run Judge.java in the project. �e local test data are di�erent
from the data that are used in the online judge.

Submit only your Main.java.

Notes

For your convenience, the following �gure shows a generic right (resp. le�) tree roation around vertex
v (resp. u).

u

α β

γ

v Rechtsrotation um v u

v

β γ
α

Linksrotation um u



Stud.-Nummer: Algorithmen & Datenstrukturen Seite 3

�e input and output are handled by the template – you should not need the rest of this text.

Input �e input of this problem consists of a number of test cases. �e �rst line of the input contains
the number of test cases.�e �rst line of each test case contains the numberm of operations to perform.
�e next m lines each contain a character C and an integer x, separated by a space. �e character C
can be either “I” or “R”. If C is “I” then xmust be inserted into the AVL tree. If C is “R”, then a rank(x)
operation must be performed.

Output �e output contains one line for each rank(x) operation. More precisely, the i-th line of
the output contains a single integer corresponding to the result of the i-th rank(x) operation in the
input.

Example input.
1

10

I 6

I 3

I 9

R 10

I 4

I 8

I 1

I 0

R 5

R 8

Example output:
3

4

6



Stud.-Nummer: Algorithmen & Datenstrukturen Seite 4

Space for your notes. �ese will not be graded. Only what was submi�ed to the
judge counts for this exercise.



Stud.-Nummer: Algorithmen & Datenstrukturen Seite 5


