
Eidgenössische

Technische Hochschule

Zürich

Ecole polytechnique fédérale de Zurich

Politecnico federale di Zurigo

Federal Institute of Technology at Zurich

Department Informatik Johannes Lengler
Markus Püschel Gleb Novikov
David Steurer Chris Wendler

Repetition Exam

Algorithmen und Datenstrukturen

SUMMER 2020

DO NOT OPEN!

Last name, first name:

Student number:

With my signature I confirm that I can participate in the exam under regular conditions. I will
act honestly during the exam, and I will not use any forbidden means.

Signature:

Good luck!

P1: 24P P2: 16P T1: 19P T2: 21P T3: 8P T4: 12P ⌃: 100P

Score

Sign.

Exam Summer 2020 Algorithmen & Datenstrukturen page 1

Theory Task T1.
/ 19 P

Notes:

1) In this problem, you have to provide solutions only. You do not need to justify your answer.

2) We assume letters to be ordered alphabetically and numbers to be ordered ascendingly, ac-
cording to their values.

a) Landau notation: Fill out the quiz about asymptotic notation below. You get 1P for a correct/ 4 P

answer, -1P for a wrong answer, 0P for a missing answer. You get at least 0 points in total.

claim true false

(2n+ n
2 + 3)2 = ⇥(n4) ⇤ ⇤

n
logn O(

p
n) ⇤ ⇤

log(n!) = ⇥(n log n) ⇤ ⇤
Plog5 n

i=1 5i � ⌦(n log n) ⇤ ⇤

b) Graph quiz: In the following, for a given (undirected) graph G = (V,E), let n = |V |, m = |E|,/ 6 P

and let A 2 {0, 1}n⇥n be the adjacency matrix of G. Indicate whether the following statements
are true for all graphs G.

You get 1P for a correct answer, -1P for a wrong answer, 0P for a missing answer. You get at
least 0 points in total.

claim true false

A tree with n vertices must have n� 1 edges. ⇤ ⇤
The complete graph Kd with n = d vertices
cannot be coloured with less than d colours.

⇤ ⇤

An Eulerian walk visits every edge exactly once. ⇤ ⇤
Let B = A

k be the adjacency matrix raised to the
k-th power. If Bij > 0 then there is a path of
length k from i to j.

⇤ ⇤

In an unweighted graph, both BFS and DFS can be
used to determine shortest paths.

⇤ ⇤

A binary tree of height h (the root has height 0)
has at most 2h leaves.

⇤ ⇤

X

x

x

x

x
x

x

x

x

x

Exam Summer 2020 Algorithmen & Datenstrukturen page 2

c) Search trees:/ 4 P

i) Draw the binary search tree that is obtained when inserting the keys 3, 6, 1, 5, 7, 2 in this
order into an empty tree.

ii) Draw the binary search tree obtained from the following tree by performing the operation
DELETE(3).

3

1

2

6

5 7

iii) Draw the AVL tree that is obtained from the following tree by restoring the AVL-
condition.

3

1

6

2

5

iv) Draw the binary tree that has the pre-order traversal A, B, D, E, C, F, G and the
post-order traversal D, E, B, G, F, C, A.

3

I '6
'

z E 't

2 5
/ I{ 'Gore 6
l l

f 't 2 7

3

I 's
i 's

A
/ l
B C
' l l
D E F

'G

Exam Summer 2020 Algorithmen & Datenstrukturen page 3

d) Depth-first search / breadth first search: Consider the following directed graph:/ 3 P

1

2

4

6

3

5

i) Draw the depth-first tree resulting from a depth-first search starting from vertex 1. When
processing the neighbors of a vertex, process them in increasing order.

ii) Draw the breadth-first search tree resulting from a breadth-first search starting from
vertex 1. When processing the neighbors of a vertex, process them in increasing order.

iii) Remove one edge from the graph such that it can be topologically sorted, and give a
topological ordering of the resulting graph.

2)
s
' '

y
'

Gas

{
"
'
3

l l
4 6

15

Remove (3,2) i.e .
3→ 2
,

124653

Exam Summer 2020 Algorithmen & Datenstrukturen page 4

e) Sorting algorithms:/ 2 P

Below you see four sequences of snapshots, each obtained during the execution of one of the
following five algorithms: InsertionSort, SelectionSort, QuickSort, MergeSort,
and BubbleSort. For each sequence, write down the corresponding algorithm.

8 6 4 2 5 1 3 7

6 4 2 5 1 3 7 8

4 2 5 1 3 6 7 8

Algorithm:

8 6 4 2 5 1 3 7

1 6 4 2 5 8 3 7

1 2 4 6 5 8 3 7

Algorithm:

8 6 4 2 5 1 3 7

6 8 2 4 1 5 3 7

2 4 6 8 1 3 5 7

Algorithm:

8 6 4 2 5 1 3 7

6 8 4 2 5 1 3 7

4 6 8 2 5 1 3 7

Algorithm:

bubblesat selection sort

mergesat
insertion sort

Exam Summer 2020 Algorithmen & Datenstrukturen page 5

Theory Task T2.
/ 21 P

Notes: In this part, you should justify your answers briefly.

a) Induction: Prove by mathematical induction that for any positive integer n � 3,/ 2 P

n
2
� 2n+ 3 .

Solution:

Base case For n = 3 we have 9 = 6 + 3.

Induction hypothesis (I.H.) Assume k
2
� 2k + 3 holds for some k � 3.

Induction step (k ! k + 1)

(k + 1)2 = k
2 + 2k + 1

� 2k + 3 + 2k + 1 , [by I.H.]

� 2(k + 1) + 3 , [2k + 1 � 2].

(1)

b) Factorial:/ 3 P

i) Provide pseudo code using a for-loop for the computation of the factorial of a positive
integer n:

n! = n(n� 1)(n� 2) · · · 1.

Solution:

Algorithm 1 factorial(n)
res = 1
for k = 1, . . . , n do

res = k · res
return res

ii) Prove the correctness of your algorithm via mathematical induction for all n 2 N. Solu-
tion:We prove factorial(n) = n! by mathematical induction.

Base case For n = 1 we have factorial(n)=1=1! because then the for-loop only
does one iteration and res = 1 · 1 = 1 afterwards.

Induction hypothesis (I.H.) Assume factorial(m) = m! holds for some m 2 N.

Induction step (m! m+ 1) The for-loop in factorial(m + 1) computes factorial(m)
in the first m iterations and then multiplies it by m+ 1 in the last iteration. Thus,
factorial(m + 1) = (m+1)·factorial(m) = (m+1)! by the induction hypothesis.

c) Recurrence relations:/ 3 P

For this exercise, you may use the following master theorem from exercise sheet 4:

Exam Summer 2020 Algorithmen & Datenstrukturen page 6

Theorem 1 (Master theorem) Let T : N! R+ be a non-decreasing function such that for
all k 2 N and n = 2k,

T (n) aT (n/2) +O(nb)

for some constants a > 0 and b � 0. Then

• If b > log2 a, T (n) 2 O(nb).

• If b = log2 a, T (n) 2 O(nlog2 a · log n).

• If b < log2 a, T (n) 2 O(nlog2 a).

i) Consider the following recursive function that takes as an input a positive integer m that
is a power of 2. Further, let c � 4 be a power of two.

Algorithm 2 g(m)

if m > 1 then

for i = 1, 2, 3, 4, . . . , c do

g(m/2)
for j = 1, 2, 4, 8, . . . , c do

f()

else

return 0

Let T (m) be the number of calls of the function f in g(m). Give a recursive formula for
T (m).

Solution:

T (m) = cT (m/2) + log2(c)

Determine T (m) in O-notation.

Solution: We have T (m) 2 O(nlog2 c), which follows from the master theorem with a = c

and b = 0 (observe that log2(c) 2 O(1) = O(n0)) and 0 < log2(c) for c � 4.

d) Shortest Paths with BFS: Consider a directed weighted graph G with vertices V , edges E/ 6 P

and positive integer edge weights w : E ! N.

i) State the name of an e�cient algorithm for computing the lengths of all shortest paths
starting from s 2 V .

Solution: Dijkstra

ii) What is the asymptotic running time of the algorithm?

Solution: O((|V |+ |E|) log |V |). (Or O(|V | log |V |+ |E|) with Fibonacci heaps)

When the edge weights are small positive integers, i.e., w : E ! {1, 2, . . . , d}, it is possible
to modify the graph such that the shortest path problem can be solved using BFS on the
modified graph G

0 = (V 0
, E

0).

Exam Summer 2020 Algorithmen & Datenstrukturen page 7

iii) Explain how to modify the graph G with small positive integer weights such that the
lengths of the shortest paths starting from s 2 V can be computed using BFS. How do
you read o↵ the length of a shortest path from s to v in G from the BFS in G

0?

Solution: We construct a new graph G
0 = (V 0

, E
0) by first adding all vertices V to V

0.
Then, for each edge (u, v) 2 E we add w(e) � 1 new intermediate nodes x1, . . . , xw(e)�1

to V
0 and add the edges (u, x1), (x1, x2), (x2, x3), . . . , (xw(e)�1, v) to E

0.

iv) What is the number of vertices and edges in the modified graph G
0?

Solution: |E
0
| =

P
e2E w(e) and |V

0
| = |V |+

P
e2E(w(e)� 1) = |V |+ |E

0
|� |E|

v) What is the running time of BFS on G
0?

Solution: O(|V 0
|+ |E

0
|) = O(|V |+ |E

0
|)

e) Top k Elements: You are given an array of n integers. The goal is to extract the k largest/ 7 P

elements from that sequence. Assume that both k, n 2 N are known and that n is significantly
larger than k.

i) Which data structure presented in the lecture can be used to solve this task e�ciently?

Solution: Max-heap

ii) Provide an algorithm (using pseudo code) that utilizes the data structure from i) to
extract the k largest elements from a given input array x1, . . . , xn of integers.

Solution:

Algorithm 3 k-largest(x1, . . . , xn)

maxheap heapify(x1, . . . , xn)
for i = 1, . . . , k do

m extract maximum from maxheap
print out m

iii) Analyze the running time (asymptotic amount of operations) and memory requirements
of your solution.

Solution: First, heapify creates a Max-heap from n elements in linear time. Then, we
perform k times an extraction of the maximum on a heap of size ⇡ n. The extraction of
the maximum entails removing the root and fixing the heap condition afterwards which
takes log n time. Thus, overall our solution requires O(n+ k log n) time.

iv) Now, consider the modified problem: Instead of a finite array x1, x2, x3, . . . , xn, you
now have to process an infinite sequence x1, x2, x3, Formally, at each time step
t = 1, 2, 3, . . . , you get a new integer xt. Thus, n is not known anymore but k is still
known. At some point, you will be asked to provide the k largest elements of x1, . . . , xt.
But you do not know in advance when that request will come. You may assume that the
first request occurs for some t > k.

Exam Summer 2020 Algorithmen & Datenstrukturen page 8

Give an e�cient solution to this task by completing the following pseudo code such that
each call of the function TopK prints the k currently largest elements, i.e., at time t the
k largest elements within x1, . . . , xt. Your solution should require at most O(k) memory.

Solution:

Algorithm 4 processElement(datastructure, x)

// Process the integer x. Update your data structure if necessary.
if datastructure.size() < k then

datastructure.add(x)
else

y datastructure.getMinimum()
// getMinimum retrieves the minimum in constant time without deleting it.
if y < x then

datastructure.extractMinimum()
datastructure.add(x)

return datastructure

Algorithm 5 InfiniteTopK(k, x1, x2, x3, . . .)

// Process the integers x1, x2, x3, . . . such that TopK exhibits the desired behavior.
// Initialize your data structure:
datastructure initialize empty Min-heap of size k

for t = 1, 2, . . . do

datastructure processElement(datastructure, xt)

Algorithm 6 TopK(datastructure, k)

// Print the k largest elements that have been processed so far.
l datastructure.size()
for i = 1, . . . , l do

print out datastructure.extractMinimum()

Exam Summer 2020 Algorithmen & Datenstrukturen page 9

Theory Task T3.
/ 8 P

Consider the following procedure that takes two sorted (in ascending order) integer arrays A =
A[1, . . . , n] and B = B[1, . . . ,m] as input and merges them:

procedure Merge(A,B)
M [1], . . . ,M [n],M [n+ 1], . . . ,M [n+m] 0, . . . , 0
i, j 1, 1
for 1 k n+m do

if i n and (j > m or A[i] B[j]) then
M [k] A[i]
i i+ 1

else if j m and (i > n or A[i] > B[j]) then
M [k] B[j]
j j + 1

return M

Note: if j > m, then (j > m or A[i] B[j]) always evaluates to true, no matter whether B[j] is
well-defined, and, similarly for (i > n or A[i] > B[j]).

Recall that an array C is the result of merging the sorted arrays A and B if C is sorted and
contains the same values as A and B (preserving duplicates). For example, if we merge [1, 2, 4, 6]
and [1, 3, 6, 7, 10], we obtain [1, 1, 2, 3, 4, 6, 6, 7, 10].

Show that the pseudocode above satisfies the following loop invariant INV(`) for 1 ` n + m:
After ` iterations of the for-loop,

1) the subarrayM [1, . . . , `] is the result of merging the subarrays A[1, . . . , i�1] and B[1, . . . , j�1].

2) all values in M [1, . . . , `] are at most as large as any of the values in A[i, . . . , n] and B[j, . . . ,m].

Specifically, prove the following 3 assertions.

i) INV(1) holds.

ii) If INV(`) holds, then INV(`+ 1) holds (for all 1 ` < n+m).

iii) INV(n+m) implies that the algorithm correctly merges A and B.

Finally, state the running time of the procedure Merge described above in ⇥-notation in terms of n
and m (as simplified as possible).

Proof of i). If A[1] B[1], then M [1] = A[1] and i = 2, j = 1 after the first iteration, otherwise
M [1] = B[1] and i = 1, j = 2 after the first iteration. In the first case M [1] is the result of merging
A[1] and empty B[0], in the second case M [1] is the result of merging B[1] and empty A[0], so 1)
holds.

Condition 2) holds since M [1] = min{B[1], A[1]} which cannot exceed any element of A and B since
both A and B are sorted.

Exam Summer 2020 Algorithmen & Datenstrukturen page 10

Proof of ii). Let’s denote the values of i and j after ` iterations of the foor-loop by i(`) and j(`).
Notice that condition 1) of INV(`) imlies i(`)� 1 + j(`)� 1 = ` < n+m, hence either i(`) n or
j(`) m.

Consider the case i(`) n and (j(`) > m or A[i(`)] B[j(`)]). In this case M [` + 1] = A[i(`)],
i(`+ 1) = i(`) + 1 and j(`+ 1) = j(`).

Condition 1) of INV(`+1) holds since M [1, . . . , `] is the result of merging A[1, . . . , i(`+1)� 2] and
B[1, . . . , j(`+1)], and since all elements of M [1, . . . , `] are not greater than M [`+1] = A[i(`+1)�1].

If j(`) > m, condition 1 of INV(`) implies that j(`) = m+1. In this case condition 2) of INV(`+1)
holds since B[m + 1, . . . ,m] is empty, any element from M [1, . . . , ` + 1] is at most M [` + 1] =
A[i(`+ 1)� 1], and A is sorted.

If j(`) m and A[i(`)] B[j(`)], condition 2) holds since any element from M [1, . . . , ` + 1] is at
most M [`+ 1] = A[i(`+ 1)� 1] B[j(`+ 1)], and A and B are sorted.

The case j(`) m and (i(`) > n or A[i(`)] > B[j(`)]) is very similar (the solution can be obtained
from the previous one by exchanging m with n, A with B and i with j).

Proof of iii). Notice that if i � 1 n, j � 1 m and i � 1 + j � 1 = n +m, then i � 1 = n and
j � 1 = m. Hence condition 1) of INV(n+m) implies that M [1, . . . , n+m] is the result of merging
A[1, . . . , n] and B[1, . . .m].

Running time: Each iteration requires ⇥(1) steps, and there are n+m iterations, so the running
time is ⇥(n+m).

Exam Summer 2020 Algorithmen & Datenstrukturen page 11

Theory Task T4.
/ 12 P

Assume that there are n towns T1, . . . , Tn in the country Examistan. For each pair of distinct towns
Ti and Tj , there is exactly one road from Ti to Tj . All of the roads in Examistan are one-way. This
implies that there is always a road from Ti to Tj and another road from Tj to Ti. Each road has a
nonnegative integer cost that you need to pay to use this road.

For simplicity you can assume that each town Ti is represented by its index i.

a) Model the n towns, the roads and their costs as a directed weighted graph: give a precise/ 1 P

description of the vertices, edges and the weights of the edges of the graph G = (V,E,w)
involved (if possible, in words and not formal). What are |V | and |E| in terms of n?

Solution: The towns are modeled as the vertices V = {1, . . . , n} of the graph G. The roads
are modeled as directed edges E = {(i, j) | i 6= j, i, j = 1, . . . , n}. The costs that you need to
pay to use the roads are modeled as the weights w of the respective edges.

The number of vertices is thus |V | = n and the number of edges |E| = n
2
� n, since n

2 is the
number of possible ordered pairs (i, j) and we have to subtract the n self-edges represented
by (i, i) as they are not part of our graph.

Alternative way to get the number of edges: you choose 2 out of n to get the number of
unordered sets {i, j} with i 6= j, resulting in

�n
2

�
= 1

2(n � 1)n. But we care for the di↵erent
directions so we have to multiply this number by 2 (for (i, j) and (j, i)) resulting in |E| = n

2
�n.

Exam Summer 2020 Algorithmen & Datenstrukturen page 12

In the following subtasks b) and c), you can assume that the directed graph in a) is represented by
a data structure that allows you to traverse the direct successors and direct predecessors of a vertex
u in time O(deg+(u)) and O(deg�(u)) respectively, where deg�(u) is the in-degree of vertex u and
deg+(u) is the out-degree of vertex u.

b) Due to the epidemiological situation in Examistan, the authorities decided to reduce the/ 6 P

number of trips between di↵erent towns. Now the only way to get from one town to another
is to use the roads. Moreover, if you want to travel from town Ti to the other town Tj , you
must visit a test center during your trip (in Ti or Tj or elsewhere with a detour). Since test
centers are expensive, there are only k < n of them, and they are located only in the first k
towns T1, . . . , Tk (i.e., one test center in each of these towns).

Assume that you need to fill the table of minimal costs required to travel between all pairs of
towns, which takes into account the new rules of travelling. Provide an as e�cient as possible
algorithm that takes as input a graph G from task a) and a number k, and outputs a table C

such that C[i][j] is the minimal total cost of roads that one can use to get from Ti to Tj while
also visiting a test center. You can assume that for all 1 i n, C[i][i] = 0.

What is the running time of your algorithm in concise ⇥-notation in terms of n and k? Justify
your answer.

Solution: First note that we can not use a simple breadth-first search here, as we have a
weighted graph with non-uniform weights (just a disclaimer, because in student solutions this
appeared a lot).

For the calculation of the shortest paths between all pairs we make the following observations:
We have |E| 2 ⇥(|V |

2), hence Bellman-Ford leads to a runtime of O(|V |
4). Johnsons algorithm

leads here to O(|V |
2 log |V | + |V |

3), the same runtime as running Dijkstra |V |-times. Floyd-
Warshall on the other hand needs O(|V |

3), hence for⇥-tightness we modify the Floyd-Warshall
algorithm. The idea is to find the shortest paths from each node to the nodes T1, . . . , Tk and
from the nodes T1, . . . , Tk to all nodes. Then we use these results to obtain the cheapest paths
from Ti to Tj via at least one of the T1, . . . , Tk as the minimal sum of the cheapest-from-paths
and the cheapest-to-paths.

Exam Summer 2020 Algorithmen & Datenstrukturen page 13

function ModifiedFloydWarshall(G)
Cfrom, Cto . Cheapest paths from/to T1, . . . , Tk, initial infinity
for ` from 1 to n do

for i from 1 to n do

for j from 1 to k do

if Cfrom[i][j] > wi,` + w`,j then

Cfrom[i][j] wi,` + w`,j

if Cto[j][i] > w`,i + wj,` then

Cto[j][i] w`,i + wj,`

C[i][i] 0 . Path to itself is zero for each node
for ` from 1 to k do

for i from 1 to n do

for j from 1 to n do

if C[i][j] > Cfrom[i][`] + Cto[`][j] then
C[i][j] Cfrom[i][`] + Cto[`][j]

The algorithm is basically two times Floyd-Warshall, hence we obtain a running time of
⇥(n2

k), as in our modified version one loop only goes until k and not n.

Exam Summer 2020 Algorithmen & Datenstrukturen page 14

c) Now suppose that before building the test centers in towns T1, . . . , Tk, the authorities had/ 5 P

made the roads between all di↵erent Ti and Tj among T1, . . . , Tk free of charge (i.e. their cost
is now 0). Solve the problem from subtask b) assuming this condition.

That is, provide an as e�cient as possible algorithm that takes as input a graph G from task
a) and a number k, and outputs a table C such that C[i][j] is the minimal total cost of roads
that one should use to get from Ti to Tj with visiting a test center.

What is the running time of your algorithm in concise ⇥-notation in terms of n and k? Justify
your answer.

Solution: Since the paths between the test centers are now free of charge (i.e wi,j = 0),
we can consider the test centers as a super-vertex (i.e. all the test centers merged to one
vertex and connected to each other vertex with the minimal cost of all costs from the test
centers). This graph has n� (k� 1) vertices. Then we run Dijsktra algorithm one time to get
the shortest paths from each vertex to the super-vertex in an array C1[i]. Then we reverse
the edges and run Dijkstra another time to get the shortest paths from the super-vertex to
each vertex in an array C2[j] (this is required as the weights of the graph do not need to be
symmetric). The shortest path from vertex i to vertex j passing through one test center is
then C[i][j] = C1[i] + C2[j].

Creating the super-vertex is O(n � k) if we assume that the array containing the edge
weights for each vertex are sorted, otherwise it is O((n � k) · k). The runtime for Dijkstra
algorithm implemented with a Fibonacci heap on the modified graph with super-vertex is
O((n�k) log(n�k)+(n�k)2� (n�k)), which does not change if we run it two times. Filling
the final table is O((n� k)2), so the overall runtime is ⇥((n� k)2).

Exam Summer 2020 Algorithmen & Datenstrukturen page 15

Exam Summer 2020 Algorithmen & Datenstrukturen page 16

Extra space. Please indicate clearly to which task your notes belong. Please
cross out all notes that you do not want to be graded.

Exam Summer 2020 Algorithmen & Datenstrukturen page 17

Extra space. Please indicate clearly to which task your notes belong. Please
cross out all notes that you do not want to be graded.

Exam Summer 2020 Algorithmen & Datenstrukturen page 18

Extra space. Please indicate clearly to which task your notes belong. Please
cross out all notes that you do not want to be graded.

Exam Summer 2020 Algorithmen & Datenstrukturen page 19

Extra space. Please indicate clearly to which task your notes belong. Please
cross out all notes that you do not want to be graded.

