Randomized Algorithms and Probabilistic Methods: Advanced Topics

Exercise 1

Let μ_{1} and μ_{2} be two distributions over the same finite set X. The total variation distance between them is

$$
d_{T V}\left(\mu_{1}, \mu_{2}\right):=\frac{1}{2} \sum_{x \in X}\left|\mu_{1}(x)-\mu_{2}(x)\right| .
$$

Show

$$
d_{T V}\left(\mu_{1}, \mu_{2}\right)=\max _{X^{\prime} \subseteq X}\left|\mu_{1}\left(X^{\prime}\right)-\mu_{2}\left(X^{\prime}\right)\right|
$$

with $\mu_{i}\left(X^{\prime}\right):=\sum_{x \in X^{\prime}} \mu_{i}(x)$ for $X^{\prime} \subseteq X$ and $i \in\{1,2\}$.

Exercise 2

Let $G=(V, E)$ be a graph (undirected) with $n>0$ vertices and consider a random walk on G (i.e., at each time step he choses a neighbor of its current vertex and walks there).
(a) Model the random walk as a finite and time-homogenous Markov chain $\left(X_{t}\right)_{t \geq 0}$ and determine the transition matrix in terms of the degrees and the adjacency matrix of G.
(b) Find a stationary distribution π. Is the stationary distribution unique?
(c) Does the distribution of the random walker converge to the stationary distribution?

Exercise 3

Let $G=(V, E)$ be a directed cycle with $n \geq 3$ vertices and self-loops on each vertex (i.e., $V=[n]$ and $\left.E=\left\{(u, v) \in V^{2} \mid v=u+1 \bmod n\right\} \cup\left\{(u, v) \in V^{2} \mid u=v\right\}\right)$ and consider a random walk on G.
(a) Show that the random walk corresponds to a finite, time-homogeneous, irreducible, and aperiodic Markov chain $\left(X_{t}\right)_{t \geq 0}$, and determine the stationary distribution π.
(b) Show that the mixing time is in $\mathcal{O}\left(n^{2} \log n\right)$.

