Randomized Algorithms and Probabilistic Methods: Advanced Topics

Exercise 1

Recall that for a graph $G=(V, E)$ the edge expansion of G is defined as

$$
h(G)=\min _{S \subseteq V,|S| \leq \frac{|V|}{2}} \frac{E(S, \bar{S})}{|S|}
$$

Show that for every $0<\delta \leq 1$ the edge expansion of the random graph $G_{n, p}$ with $p \in \omega(\log n / n)$ a.a.s. satisfies

$$
h\left(G_{n, p}\right) \geq \frac{(1-\delta) n p}{2} .
$$

Exercise 2

Consider the graph $G=(V, E)$ where the vertices can be partitioned into $k \geq 2$ sets of size $n \geq 1$, this is $V=V_{1} \cup \ldots \cup V_{k}$ with $\left|V_{i}\right|=n$ for $1 \leq i \leq k$, and the edges are $E=\left\{\{u, v\} \mid u \in V_{i} \wedge v \in\right.$ V_{i+1} with $\left.1 \leq i<k\right\} \cup\left\{\{u, u\} \mid u \in V_{1} \vee u \in V_{k}\right\}$. Consider the following random walk on G : if the random walker is in a vertex in $V_{2} \cup \ldots \cup V_{k-1}$, then he chooses its destination among all neighbors uniformely at random and if he is in $V_{1} \cup V_{k}$, then he does not move with probability $1 / 2$ and otherwise choses its destination among all neighbors uniformely at random. Compute the stationary distribution π, show that the random walk converges to π and show

$$
t_{m i x} \leq \mathcal{O}\left(k^{2} \log (n k)\right)
$$

using the flow method.

Exercise 3

Compute the eigenvalues of the hypercube.

Exercise 4

Let G be a (undirected) graph. Consider the random walk on G and let P be the corresponding transition matrix.
(a) Show that G has a bipartite component iff -1 is an eigenvalue of P.
(b) Show that the number of connected components of G is equal to the multiplicity of the eigenvalue 1 of P.

You can use the following theorem:
Theorem 1 (Perron-Frobenius). Any irreducible, stochastic matrix P has eigenvalue 1 with multiplicity 1 and the corresponding eigenvector is positive.

