Randomized Algorithms and Probabilistic Methods: Advanced Topics

Exercise 1

(a) Show that the graph $G=(V, E)$, where V is the set of order- n Latin squares and E is defined by row/column/symbol-swaps, is not connected. Recall that the number of order-n Latin squares is $\left((1+o(1))\left(n / e^{2}\right)\right)^{n^{2}}$.
(b) Show that the graph $G=(V, E)$, where V is the set of order- n Latin squares and E is defined by swaps along cycles (fix two rows and swap symbols along a cycle of the corresponding permutation), is not connected. Recall the notion of an order- n cyclic Latin squares and note that it corresponds to the addition table of \mathbb{Z}_{n}.
(c) Show that the graph $G=(V, E)$, where V is the set of order- n Latin squares and E is defined by row/column/symbol-swaps in Latin sub-squares, is not connected.

