Randomized Algorithms and Probabilistic Methods: Advanced Topics

Exercise 1

Let $Q_{1} \subset n B$ and let $Q_{2} \subset n^{2} B \backslash n B$ with $\left|Q_{1}\right|+\left|Q_{2}\right|=\operatorname{poly}(n)$. A convex body K is consistent (with Q_{1} and Q_{2}) if $Q_{1} \subseteq K$ and $K \cap Q_{2}=\emptyset$. Let K_{1} be the smallest consistent body and K_{2} be the largest consistent body with $K_{2} \subseteq n^{2} B$. Show

$$
\frac{2^{n}}{\operatorname{poly}(n)} \cdot \operatorname{vol}\left(K_{1}\right) \leq \operatorname{vol}\left(K_{2}\right)
$$

Hint: Show that the convex hull $C H$ of Q_{1} is a subset of $\bigcup_{p \in C H} B_{2}(p / 2,\|p / 2\|)$. In order to do that, show that if a point x is not in $B_{2}(p / 2,\|p / 2\|)$ for some $p \in C H$, then p is in the open halfspace which is bounded by the hyperplane through x perpendicular to x and contains the origin.

Exercise 2

 with radius 1 . Show that there exists an affine transformation f such that $B \subseteq f(K) \subseteq n^{2} B$ and that f can be computed in $\operatorname{poly}(n)$ time. You may assume that you can optimize a linear function over K in $\operatorname{poly}(n)$ time.

