Randomized Algorithms and Probabilistic Methods: Advanced Topics

Exercise 1

In this exercise, you prove that the Cheeger inequality is tight up to multiplicative factors. Recall, that Cheeger's inequality states that if G is a d-regular graph on n vertices for some $n > d \ge 1$ with eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$, then

$$\frac{h(G)^2}{2d} \le d - \lambda_2 \le 2h(G).$$

For the right side of the inequality show that there exists an infinite family of connected graphs with $d - \lambda_2 \geq 2h(G)$. For the left side show that there exists an infinite family of connected graphs with $d - \lambda_2 \in \mathcal{O}(h(G)^2/(2d))$.

Exercise 2

Show that for $d \leq 2$ there exists no family of (spectral/edge) expanders with degree d.

Exercise 3

Let G = (V, E) be a *d*-regular graph on *n* vertices for some $n > d \ge 1$. Define the complement of G as $\overline{G} = (V, {V \choose 2} \setminus E)$. Show

$$\lambda_i(\overline{G}) = -1 - \lambda_{n+2-i}(G)$$

for all $2 \le i \le n$, where $\lambda_i(G)$ denotes the *i*-th largest eigenvalue of the adjacency matrix of G.