Dr. Karl Bringmann, Dr. Johannes Lengler, and Dr. Tsur Luria
Frank Mousset, Felix Weissenberger

## Randomized Algorithms and Probabilistic Methods: Advanced Topics

This is the third graded homework exercise set.

## Regulations

- There will be a total of three special exercise sets during this semester.
- You are expected to solve them carefully and then write a nice and complete exposition of your solutions using $\mathrm{EAT}_{\mathrm{E} X}$. Please submit your solutions as a pdf or ps file to frank.mousset@inf.ethz.ch (filename: [nethz user name]_ghw3.pdf/ps).
- You are welcome to discuss the exercises with your colleagues, but we expect each of you to hand in your own, individual writeup.
- Your solutions will be graded. Each solution will account for $10 \%$ of your final grade for the course (so $30 \%$ of the grade in total).


## Due date: Wednesday, May 20th, 2015 at 23:59

## Exercise 1

Let $G=(V, E)$ be a $d$-regular expander graph on $n$ vertices with spectral expansion $\lambda$, where $n \geq d \geq 1$. The eccentricity of a vertex $v$ of $G$ is defined as

$$
\epsilon(v):=\max _{u \in V} \operatorname{dist}(u, v),
$$

where $\operatorname{dist}(u, v)$ is the distance of $u$ and $v$ in $G$, i.e., the minimum number of edges on a path from $u$ to $v$ in $G$. Show that there exists $K \in \mathbb{N}$ (which may depend on $n$ ) such that for every $m>0$

$$
|\{v \in V:|\epsilon(v)-K| \geq m\}| \leq C n e^{-c m}
$$

for some constants $C, c>0$ depending only on $d$ and $\lambda$.
(20 points)

## Exercise 2

Let $G$ be a $d$-regular graph on $n$ vertices with spectral expansion $\lambda$, and let $T_{d}$ be the infinite $d$-regular tree. For a graph $H$ and $\ell \in \mathbb{N}$, let $p_{\ell}(H)$ denote the probability that if we choose a random vertex $v$ in $H$ and do a random walk of length $2 \ell$, we we end back at vertex $v$.
(1) Show that $p_{\ell}(G) \geq p_{\ell}\left(T_{d}\right) \geq C_{\ell}(d-1)^{\ell} / d^{2 \ell}$, where $C_{\ell}$ is the $\ell$-th Catalan number, which equals the number of properly parenthesized strings in $\{(,)\}^{2 \ell}$.
(2) Show that $n \cdot p_{\ell}(G) \leq 1+(n-1) \cdot(\lambda / d)^{2 \ell}$.
(3) Use the fact that $C_{\ell}=\binom{2 \ell}{\ell} /(1+\ell)$ to show that

$$
\lambda \geq 2 \sqrt{d-1}-o(1)
$$

where the $o(1)$ term tends to zero as $n \rightarrow \infty$.
(20 points)

## Exercise 3

Let $G=(V, E)$ be a $d$-regular graph on $n$ vertices for some $n>d \geq 1$. Fix a non-empty set $S \subseteq V$ and define the vector $v \in \mathbb{R}^{n}$ by

$$
v_{i}:= \begin{cases}|\bar{S}| & \text { if } i \in S \\ -|S| & \text { otherwise }\end{cases}
$$

Show first that

$$
\phi(S)=d-\frac{v^{T} A v}{n \cdot|S| \cdot|\bar{S}|}
$$

where $A$ denotes the adjacency matrix of $G$ and where $\phi(S)=n|E(S, \bar{S})| /(|S||\bar{S}|)$. Then use this to show the easy direction of the proof of the Cheeger inequality:

$$
d-\lambda_{2} \leq \phi(S)
$$

(20 points)

