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Solution to Exercise 1

(a) Assume f is increasing and integrable on [a, b]. We can write
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since f(k)-1< [} k+1 f(z) dz for increasing f. Furthermore,
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since f(k)-1 > f 1/ (r) dx for increasing f. The proof for decreasing f is analogous and the statement
follows.

Let H, := > ;_, 1/k. We can simply apply the result from (a) to get
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Looking closely at the error term in (a), we can actually obtain the stronger statement that the limit
~v = lim,, o H, — Inn exists. The constant v is usually called the Euler-Mascheroni constant.

Write
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Recall that f Inzdr =blnb—b—alna+a. If we write Ay := f’H_ Inx dx —In k, then this simplifies
to
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where in (2) we applied Taylor’s theorem, in (3) we applied (b), and in the last line, we used the
well-known fact that Y- | 1/k? converges. Plugging this into (1), we get
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as required. Again, by doing the same proof a little more carefully, we obtain that there exists a
constant ¢ such that n! ~ c¢-+/n(n/e)™. Surprisingly, it turns out that ¢ = v/27. This result is usually
referred to as Stirling’s approximation to the factorial.

Solution to Exercise 2

For a < 2 we see that A(a) < 0.5 because the number of missing trophies cannot be negative. Hence, for
a = 2 we get X;41 = 0 if the team wins 2 or 3 trophies and for a = 1 we get X1 = 0 if the team wins 1,
2 or 3 trophies. Similarly, for @ > 3 we have A’(a) > 0.5: for a = 3, if the team wins at 1, 2 or 3 trophies,
then Y; 11 is 0 and for a = 4, if the team wins 2 or 3 trophies, then Y;4; is 0. In both cases, Y; — Y41 > 3.

Solution to Exercise 3
Equation (1.2) from the lecture notes is equivalent to
E[Xrp1 | X7] < (1 - 0)E[X- | Xr] = (1-6) X,
by linearity of expectation. Taking the expectation on both sides,
EE[Xr 1 | X < (1 - 0)E[X,].
Since E[E[X 41 | X;]] = E[X41], we get E[X,41] < (1 — 0)E[X,], and so, by induction, we obtain
E[X,] < (1— 6)"E[Xo] = (1 — 6)"s0,

as required.

Solution to Exercise 4

Let (X;);>0 be a (time-homogeneous) Markov chain with state space 0 € S C R{ such that the values
Y (z) =E[T | Xo = x] are well-defined. Note that Y (a) = 0 if and only if a = 0.

For all xg # 0, we have

Y(2o) =E[T | Xo =x0] = »_ Pr[Xy =z | Xo = o] - E[T | X; = 1]
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Thus, for all a # 0, we have
E[Yis1 |V, =a] =E[Y; | Yo=a] = Pr[Xo=z|Yy=da]-E[Y; | Xo=a]=a—1,
zeS
SO
EYi =Y [ Vi=a] =1,

as required.



