
ETH Zurich
Institute of Theoretical Computer Science
Dr. Karl Bringmann, Dr. Johannes Lengler, and Dr. Tsur Luria
Frank Mousset, Felix Weissenberger

FS 2015
Solution 1

Randomized Algorithms and Probabilistic Methods:
Advanced Topics

Solution to Exercise 1

(a) Assume f is increasing and integrable on [a, b]. We can write
b∑

k=a

f(k) ≤
b−1∑
k=a

∫ k+1

k

f(x) dx+ f(b) =

∫ b

a

f(x) dx+ f(b),

since f(k) · 1 ≤
∫ k+1

k
f(x) dx for increasing f . Furthermore,

b∑
k=a

f(k) ≥
b∑

k=a+1

∫ k

k−1
f(x) dx+ f(a) =

∫ b

a

f(x) dx+ f(a),

since f(k)·1 ≥
∫ k
k−1f(x) dx for increasing f . The proof for decreasing f is analogous and the statement

follows.

(b) Let Hn :=
∑n
k=1 1/k. We can simply apply the result from (a) to get

lnn+
1

n
=

∫ n

1

1

x
dx+

1

n
≤ Hn ≤

∫ n

1

1

x
dx+ 1 = lnn+ 1.

Looking closely at the error term in (a), we can actually obtain the stronger statement that the limit
γ = limn→∞Hn − lnn exists. The constant γ is usually called the Euler-Mascheroni constant.

(c) Write

lnn! =

n∑
k=1

ln k = lnn+

∫ n

1

lnxdx−
n−1∑
k=1

∫ k+1

k

lnxdx− ln k.

Recall that
∫ b
a

lnx dx = b ln b− b−a ln a+a. If we write ∆k :=
∫ k+1

k
lnxdx− ln k, then this simplifies

to

lnn! = lnn+ n lnn− n+ 1−
n−1∑
k=1

∆k. (1)

We get
n−1∑
k=1

∆k =

n−1∑
k=1

(k + 1) ln (k + 1)− k ln k − ln k − 1

=

n−1∑
k=1

(k + 1)(ln (k + 1)− ln k)− 1

=

n−1∑
k=1

(k + 1) ln(1 + 1/k)− 1

=

n−1∑
k=1

(k + 1)

(
1

k
− 1

2k2
+O(k−3)

)
− 1 (2)

=

n−1∑
k=1

1

2k
+O(k−2) (3)

=
1

2
lnn+O(1), (4)



where in (2) we applied Taylor’s theorem, in (3) we applied (b), and in the last line, we used the
well-known fact that

∑∞
k=1 1/k2 converges. Plugging this into (1), we get

lnn! = n lnn− n+ 1 +
lnn

2
+O(1),

so
n! = eO(1) ·

√
n
(n
e

)n
,

as required. Again, by doing the same proof a little more carefully, we obtain that there exists a
constant c such that n! ∼ c ·

√
n(n/e)n. Surprisingly, it turns out that c =

√
2π. This result is usually

referred to as Stirling’s approximation to the factorial.

Solution to Exercise 2

For a ≤ 2 we see that ∆(a) ≤ 0.5 because the number of missing trophies cannot be negative. Hence, for
a = 2 we get Xt+1 = 0 if the team wins 2 or 3 trophies and for a = 1 we get Xt+1 = 0 if the team wins 1,
2 or 3 trophies. Similarly, for a ≥ 3 we have ∆′(a) ≥ 0.5: for a = 3, if the team wins at 1, 2 or 3 trophies,
then Yt+1 is 0 and for a = 4, if the team wins 2 or 3 trophies, then Yt+1 is 0. In both cases, Yt−Yt+1 ≥ 3.

Solution to Exercise 3

Equation (1.2) from the lecture notes is equivalent to

E[Xτ+1 | Xτ ] ≤ (1− δ)E[Xτ | Xτ ] = (1− δ)Xτ ,

by linearity of expectation. Taking the expectation on both sides,

E[E[Xτ+1 | Xτ ]] ≤ (1− δ)E[Xτ ].

Since E[E[Xτ+1 | Xτ ]] = E[Xτ+1], we get E[Xτ+1] ≤ (1− δ)E[Xτ ], and so, by induction, we obtain

E[Xτ ] ≤ (1− δ)τE[X0] = (1− δ)τs0,

as required.

Solution to Exercise 4

Let (Xt)t≥0 be a (time-homogeneous) Markov chain with state space 0 ∈ S ⊆ R+
0 such that the values

Y (x) = E[T | X0 = x] are well-defined. Note that Y (a) = 0 if and only if a = 0.

For all x0 6= 0, we have

Y (x0) = E[T | X0 = x0] =
∑
x1∈S

Pr[X1 = x1 | X0 = x0] · E[T | X1 = x1]

=
∑
x1∈S

Pr[X1 = x1 | X0 = x0] · (1 + E[T | X0 = x1])

= 1 + E[Y1 | X0 = x0].

Thus, for all a 6= 0, we have

E[Yt+1 | Yt = a] = E[Y1 | Y0 = a] =
∑
x∈S

Pr[X0 = x | Y0 = a] · E[Y1 | X0 = x] = a− 1,

so
E[Yt − Yt+1 | Yt = a] = 1,

as required.


