Randomized Algorithms and Probabilistic Methods: Advanced Topics

Solution to Exercise 1

(a) Assume f is increasing and integrable on $[a, b]$. We can write

$$
\sum_{k=a}^{b} f(k) \leq \sum_{k=a}^{b-1} \int_{k}^{k+1} f(x) \mathrm{d} x+f(b)=\int_{a}^{b} f(x) \mathrm{d} x+f(b)
$$

since $f(k) \cdot 1 \leq \int_{k}^{k+1} f(x) \mathrm{d} x$ for increasing f. Furthermore,

$$
\sum_{k=a}^{b} f(k) \geq \sum_{k=a+1}^{b} \int_{k-1}^{k} f(x) \mathrm{d} x+f(a)=\int_{a}^{b} f(x) \mathrm{d} x+f(a)
$$

since $f(k) \cdot 1 \geq \int_{k-1}^{k} f(x) \mathrm{d} x$ for increasing f. The proof for decreasing f is analogous and the statement follows.
(b) Let $H_{n}:=\sum_{k=1}^{n} 1 / k$. We can simply apply the result from (a) to get

$$
\ln n+\frac{1}{n}=\int_{1}^{n} \frac{1}{x} \mathrm{~d} x+\frac{1}{n} \leq H_{n} \leq \int_{1}^{n} \frac{1}{x} \mathrm{~d} x+1=\ln n+1
$$

Looking closely at the error term in (a), we can actually obtain the stronger statement that the limit $\gamma=\lim _{n \rightarrow \infty} H_{n}-\ln n$ exists. The constant γ is usually called the Euler-Mascheroni constant.
(c) Write

$$
\ln n!=\sum_{k=1}^{n} \ln k=\ln n+\int_{1}^{n} \ln x \mathrm{~d} x-\sum_{k=1}^{n-1} \int_{k}^{k+1} \ln x \mathrm{~d} x-\ln k .
$$

Recall that $\int_{a}^{b} \ln x \mathrm{~d} x=b \ln b-b-a \ln a+a$. If we write $\Delta_{k}:=\int_{k}^{k+1} \ln x \mathrm{~d} x-\ln k$, then this simplifies to

$$
\begin{equation*}
\ln n!=\ln n+n \ln n-n+1-\sum_{k=1}^{n-1} \Delta_{k} \tag{1}
\end{equation*}
$$

We get

$$
\begin{align*}
\sum_{k=1}^{n-1} \Delta_{k} & =\sum_{k=1}^{n-1}(k+1) \ln (k+1)-k \ln k-\ln k-1 \\
& =\sum_{k=1}^{n-1}(k+1)(\ln (k+1)-\ln k)-1 \\
& =\sum_{k=1}^{n-1}(k+1) \ln (1+1 / k)-1 \\
& =\sum_{k=1}^{n-1}(k+1)\left(\frac{1}{k}-\frac{1}{2 k^{2}}+\mathcal{O}\left(k^{-3}\right)\right)-1 \tag{2}\\
& =\sum_{k=1}^{n-1} \frac{1}{2 k}+\mathcal{O}\left(k^{-2}\right) \tag{3}\\
& =\frac{1}{2} \ln n+\mathcal{O}(1) \tag{4}
\end{align*}
$$

where in (2) we applied Taylor's theorem, in (3) we applied (b), and in the last line, we used the well-known fact that $\sum_{k=1}^{\infty} 1 / k^{2}$ converges. Plugging this into (1), we get

$$
\ln n!=n \ln n-n+1+\frac{\ln n}{2}+\mathcal{O}(1)
$$

so

$$
n!=e^{\mathcal{O}(1)} \cdot \sqrt{n}\left(\frac{n}{e}\right)^{n}
$$

as required. Again, by doing the same proof a little more carefully, we obtain that there exists a constant c such that $n!\sim c \cdot \sqrt{n}(n / e)^{n}$. Surprisingly, it turns out that $c=\sqrt{2 \pi}$. This result is usually referred to as Stirling's approximation to the factorial.

Solution to Exercise 2

For $a \leq 2$ we see that $\Delta(a) \leq 0.5$ because the number of missing trophies cannot be negative. Hence, for $a=2$ we get $X_{t+1}=0$ if the team wins 2 or 3 trophies and for $a=1$ we get $X_{t+1}=0$ if the team wins 1 , 2 or 3 trophies. Similarly, for $a \geq 3$ we have $\Delta^{\prime}(a) \geq 0.5$: for $a=3$, if the team wins at 1,2 or 3 trophies, then Y_{t+1} is 0 and for $a=4$, if the team wins 2 or 3 trophies, then Y_{t+1} is 0 . In both cases, $Y_{t}-Y_{t+1} \geq 3$.

Solution to Exercise 3

Equation (1.2) from the lecture notes is equivalent to

$$
\mathbb{E}\left[X_{\tau+1} \mid X_{\tau}\right] \leq(1-\delta) \mathbb{E}\left[X_{\tau} \mid X_{\tau}\right]=(1-\delta) X_{\tau}
$$

by linearity of expectation. Taking the expectation on both sides,

$$
\mathbb{E}\left[\mathbb{E}\left[X_{\tau+1} \mid X_{\tau}\right]\right] \leq(1-\delta) \mathbb{E}\left[X_{\tau}\right]
$$

Since $\mathbb{E}\left[\mathbb{E}\left[X_{\tau+1} \mid X_{\tau}\right]\right]=\mathbb{E}\left[X_{\tau+1}\right]$, we get $\mathbb{E}\left[X_{\tau+1}\right] \leq(1-\delta) \mathbb{E}\left[X_{\tau}\right]$, and so, by induction, we obtain

$$
\mathbb{E}\left[X_{\tau}\right] \leq(1-\delta)^{\tau} \mathbb{E}\left[X_{0}\right]=(1-\delta)^{\tau} s_{0}
$$

as required.

Solution to Exercise 4

Let $\left(X_{t}\right)_{t \geq 0}$ be a (time-homogeneous) Markov chain with state space $0 \in S \subseteq \mathbb{R}_{0}^{+}$such that the values $Y(x)=\mathbb{E}\left[T \mid X_{0}=x\right]$ are well-defined. Note that $Y(a)=0$ if and only if $a=0$.
For all $x_{0} \neq 0$, we have

$$
\begin{aligned}
Y\left(x_{0}\right)=\mathbb{E}\left[T \mid X_{0}=x_{0}\right] & =\sum_{x_{1} \in S} \operatorname{Pr}\left[X_{1}=x_{1} \mid X_{0}=x_{0}\right] \cdot \mathbb{E}\left[T \mid X_{1}=x_{1}\right] \\
& =\sum_{x_{1} \in S} \operatorname{Pr}\left[X_{1}=x_{1} \mid X_{0}=x_{0}\right] \cdot\left(1+\mathbb{E}\left[T \mid X_{0}=x_{1}\right]\right) \\
& =1+\mathbb{E}\left[Y_{1} \mid X_{0}=x_{0}\right]
\end{aligned}
$$

Thus, for all $a \neq 0$, we have

$$
\mathbb{E}\left[Y_{t+1} \mid Y_{t}=a\right]=\mathbb{E}\left[Y_{1} \mid Y_{0}=a\right]=\sum_{x \in S} \operatorname{Pr}\left[X_{0}=x \mid Y_{0}=a\right] \cdot \mathbb{E}\left[Y_{1} \mid X_{0}=x\right]=a-1
$$

so

$$
\mathbb{E}\left[Y_{t}-Y_{t+1} \mid Y_{t}=a\right]=1
$$

as required.

