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Solution to Exercise 1

(a) First, we show that the Markov property implies E[T | X1 = x1 ∧ X0 = x0] = E[T | X1 = x1], for
x0 6= 0:

E[T | X1 = x1 ∧X0 = x0] =∑
t≥0

t · Pr[T = t | X1 = x1 ∧X0 = x0] =

∑
t≥0

t ·
∑

xt−1,...,x2

Pr[Xt = 0 ∧Xt−1 = xt−1 ∧ . . . ∧X2 = x2 | X1 = x1 ∧X0 = x0] =

∑
t≥0

t ·
∑

xt−1,...,x2

Pr[Xt = 0 | Xt−1 = xt−1 ∧ · · · ∧X0 = x0] · · ·Pr[X2 = x2 | X1 = x1 ∧X0 = x0] =

∑
t≥0

t ·
∑

xt−1,...,x2

Pr[Xt = 0 | Xt−1 = xt−1] · · ·Pr[X2 = x2 | X1 = x1] =

∑
t≥0

t ·
∑

xt−1,...,x2

Pr[Xt = 0 ∧Xt−1 = xt−1 ∧ · · · ∧X2 = x2 | X1 = x1] =

∑
t≥0

t · Pr[T = t | X1 = x1] =

E[T | X1 = x1],

where the sum
∑

xt−1,...,x2
is over the elements of (S \ 0)t−2. Hence, we can conclude∑

x1∈S
Pr[X1 = x1 | X0 = x0] · E[T | X1 = x1] =

∑
x1∈S

Pr[X1 = x1 | X0 = x0] · E[T | X1 = x1 ∧X0 = x0] =

∑
x1∈S

Pr[X1 = x1 | X0 = x0] ·
∑
t≥0

t · Pr[T = t | X1 = x1 ∧X0 = x0] =

∑
x1∈S

∑
t≥0

t · Pr[X1 = x1 | X0 = x0] · Pr[T = t | X1 = x1 ∧X0 = x0] =

∑
x1∈S

∑
t≥0

t · Pr[T = t ∧X1 = x1 | X0 = x0] =

∑
t≥0

t ·
∑
x1∈S

Pr[T = t ∧X1 = x1 | X0 = x0] =

∑
t≥0

t · Pr[T = t | X0 = x0] =

E[T | X0 = x0].



(b) We simply calculate

E[E[X | Y ]] =
∑
y

E[X | Y = y] · Pr[Y = y]

=
∑
y

∑
x

x · Pr[X = x | Y = y] · Pr[Y = y]

=
∑
y

∑
x

x · Pr[X = x ∧ Y = y]

=
∑
x

∑
y

x · Pr[X = x ∧ Y = y]

=
∑
x

x · Pr[X = x]

= E[X].

Solution to Exercise 2
Let Xt be the random variable counting the missing coupons at time t and T be the first point in time t
such that Xt = 0. First, note that E[T | X0 = n] ≥ (1− o(1))n lnn because the process is at most as fast
as the Coupon Collector process.
Hence, it is left to show an upper bound. Let ε > 0 and Tεn be the first point in time t such that Xt = εn.
We can write E[T | X0 = n] = E[Tεn | X0 = n] + E[T | X0 = εn].

To compute E[Tεn | X0 = n] define the random variables Yt as

Yt :=

{
Xt, if Xt > εn,
0, otherwise,

and denote by TY the first point in time t such that Yt = 0. We apply the Multiplicative Drift theorem
with δ = 1/(2n), smin = εn, and s0 = n:

E[Tεn | X0 = n] = E[TY | Y0 = n] ≤
1 + ln 1

ε
1
2n

= O(n).

Now we determine E[T | X0 = εn]. Let E be the event that Alice loses all coupons. We have

E[T | X0 = εn] = (1− 1

2n
)εn · E[T | X0 = εn ∧ E ] + (1− (1− 1

2n
)εn) · E[T | X0 = εn ∧ E ]

≤ E[T | X0 = εn ∧ E ] +
ε

2
· E[T | X0 = εn ∧ E ],

where we used Bernoulli’s inequality in the last line. Note that E[T | X0 = εn ∧ E ] = (1 + o(1))n lnn,
since conditioned on the event E the process behaves like the Coupon Collector process. Furthermore, we
can bound E[T | X0 = εn ∧ E ] ≤ 2E[T | X0 = n]. Solving yields E[T | X0 = εn] ≤ (1 + o(1))n lnn.

Solution to Exercise 3
We consider the case a ≤ 1. Define the random variables Yt as

Yt :=

{
lnXt, if Xt > 0,
0, otherwise.

Note that Yt is 0 if Xt is 0 or 1. Hence, to show the lower bound for the Random Decline process, it
suffices to show E[T | Y0 = lnn] = Ω(lnn). The drift of (Yt)t≥0 is

E[Yt − Yt+1 | Yt = lnx] = lnx−
baxc∑
i=2

ln i

1 + baxc

≤ lnx− 1

1 + baxc
· (baxc lnbaxc − baxc)

= O(1).



Thus, we can apply the Additive Drift theorem to obtain that E[T | Y0 = lnn] = Ω(lnn). For a > 1 note
that we can couple the processes: Let (Xt)t≥0 be the process with a > 1 and (X ′t)t≥0 be the process with
a = 1. The coupling is as follows: if Xt+1 ≤ X ′t we set X ′t+1 = Xt+1 and otherwise (X ′t)t≥0 does a regular
step. Hence, Xt ≥ X ′t holds for all t ≥ 0 and (Xt)t≥0 can not be faster than (X ′t)t≥0.

Solution to Exercise 4

(i) If there is a weight wi < 0, then we can just apply the automorphism ϕ to the hypercube that flips
0 and 1 in the i-th bit, and replace the weight wi < 0 by w′i := −wi > 0.

Note that then we have fw(x)−fw(y) = fw′(ϕ(x))−fw′(ϕ(y)) for all x, y ∈ Hn. Therefore, by setting
y = 0, we get fw(x) = fw′(ϕ(x)) − fw′(ϕ(0)) for all x ∈ Hn, so both problems are equivalent. Not
only do they take the miminum in the same places, have the same optimum, but the optimization
algorithm makes the same choices on both instances, modulo ϕ.

Similarly, changing the order of the bits does not change the problem.

(ii) The upper bound is trivial. For the lower bound, observe that for fixed i, the probability that we
flip exactly the i-th bit is 1/n · (1 − 1/n)n−1. We use the well-known formula (1 − x/n)n ≤ e−x ≤
(1− x/n)n−1 for x = 1. (It holds for all x ≥ 0.) Now we sum over all i and obtain

p0 =

(
1− 1

n

)n−1

≥ 1

e
.

(iii) For a = 0 the statement is trivial. For a > 0, we compute directly

E[Xt −Xt+1 | Xt = a] ≥ E[Xt −Xt+1 | Xt = a and we flip exactly one bit.] · 1

e

=
1

e
·

∑
i-th bit wrong

Pr[flip exactly i-th bit] · wi

≥ 1

en
·

∑
i-th bit wrong

wi

=
a

en
.

(iv) We apply the Variable Drift theorem, where smin = wmin and h(x) = x/(en). We obtain

E[T | X0 = a] ≤ wmin

h(wmin)
+

∫ a

wmin

1

h(x)
dx = en

(
1 +

∫ a

wmin

1

x
dx

)
= en

(
1 + log

(
a

wmin

))
.

Observing that the starting value is a =
∑n

i=1 wi yields the result.


