Randomized Algorithms and Probabilistic Methods: Advanced Topics

Solution to Exercise 1

(a) First, we show that the Markov property implies $\mathbb{E}\left[T \mid X_{1}=x_{1} \wedge X_{0}=x_{0}\right]=\mathbb{E}\left[T \mid X_{1}=x_{1}\right]$, for $x_{0} \neq 0$:

$$
\begin{aligned}
& \mathbb{E}\left[T \mid X_{1}=x_{1} \wedge X_{0}=x_{0}\right]= \\
& \quad \sum_{t \geq 0} t \cdot \operatorname{Pr}\left[T=t \mid X_{1}=x_{1} \wedge X_{0}=x_{0}\right]= \\
& \quad \sum_{t \geq 0} t \cdot \sum_{x_{t-1}, \ldots, x_{2}} \operatorname{Pr}\left[X_{t}=0 \wedge X_{t-1}=x_{t-1} \wedge \ldots \wedge X_{2}=x_{2} \mid X_{1}=x_{1} \wedge X_{0}=x_{0}\right]= \\
& \sum_{t \geq 0} t \cdot \sum_{x_{t-1}, \ldots, x_{2}} \operatorname{Pr}\left[X_{t}=0 \mid X_{t-1}=x_{t-1} \wedge \cdots \wedge X_{0}=x_{0}\right] \cdots \operatorname{Pr}\left[X_{2}=x_{2} \mid X_{1}=x_{1} \wedge X_{0}=x_{0}\right]= \\
& \sum_{t \geq 0} t \cdot \sum_{x_{t-1}, \ldots, x_{2}} \operatorname{Pr}\left[X_{t}=0 \mid X_{t-1}=x_{t-1}\right] \cdots \operatorname{Pr}\left[X_{2}=x_{2} \mid X_{1}=x_{1}\right]= \\
& \sum_{t \geq 0} t \cdot \sum_{x_{t-1}, \ldots, x_{2}} \operatorname{Pr}\left[X_{t}=0 \wedge X_{t-1}=x_{t-1} \wedge \cdots \wedge X_{2}=x_{2} \mid X_{1}=x_{1}\right]= \\
& \sum_{t \geq 0} t \cdot \operatorname{Pr}\left[T=t \mid X_{1}=x_{1}\right]= \\
& \mathbb{E}\left[T \mid X_{1}=x_{1}\right],
\end{aligned}
$$

where the sum $\sum_{x_{t-1}, \ldots, x_{2}}$ is over the elements of $(S \backslash 0)^{t-2}$. Hence, we can conclude

$$
\begin{aligned}
& \sum_{x_{1} \in S} \operatorname{Pr}\left[X_{1}=x_{1} \mid X_{0}=x_{0}\right] \cdot \mathbb{E}\left[T \mid X_{1}=x_{1}\right]= \\
& \sum_{x_{1} \in S} \operatorname{Pr}\left[X_{1}=x_{1} \mid X_{0}=x_{0}\right] \cdot \mathbb{E}\left[T \mid X_{1}=x_{1} \wedge X_{0}=x_{0}\right]= \\
& \sum_{x_{1} \in S} \operatorname{Pr}\left[X_{1}=x_{1} \mid X_{0}=x_{0}\right] \cdot \sum_{t \geq 0} t \cdot \operatorname{Pr}\left[T=t \mid X_{1}=x_{1} \wedge X_{0}=x_{0}\right]= \\
& \sum_{x_{1} \in S} \sum_{t \geq 0} t \cdot \operatorname{Pr}\left[X_{1}=x_{1} \mid X_{0}=x_{0}\right] \cdot \operatorname{Pr}\left[T=t \mid X_{1}=x_{1} \wedge X_{0}=x_{0}\right]= \\
& \sum_{x_{1} \in S} \sum_{t \geq 0} t \cdot \operatorname{Pr}\left[T=t \wedge X_{1}=x_{1} \mid X_{0}=x_{0}\right]= \\
& \sum_{t \geq 0} t \cdot \sum_{x_{1} \in S} \operatorname{Pr}\left[T=t \wedge X_{1}=x_{1} \mid X_{0}=x_{0}\right]= \\
& \sum_{t \geq 0} t \cdot \operatorname{Pr}\left[T=t \mid X_{0}=x_{0}\right]= \\
& \mathbb{E}\left[T \mid X_{0}=x_{0}\right] .
\end{aligned}
$$

(b) We simply calculate

$$
\begin{aligned}
\mathbb{E}[\mathbb{E}[X \mid Y]] & =\sum_{y} \mathbb{E}[X \mid Y=y] \cdot \operatorname{Pr}[Y=y] \\
& =\sum_{y} \sum_{x} x \cdot \operatorname{Pr}[X=x \mid Y=y] \cdot \operatorname{Pr}[Y=y] \\
& =\sum_{y} \sum_{x} x \cdot \operatorname{Pr}[X=x \wedge Y=y] \\
& =\sum_{x} \sum_{y} x \cdot \operatorname{Pr}[X=x \wedge Y=y] \\
& =\sum_{x} x \cdot \operatorname{Pr}[X=x] \\
& =\mathbb{E}[X] .
\end{aligned}
$$

Solution to Exercise 2

Let X_{t} be the random variable counting the missing coupons at time t and T be the first point in time t such that $X_{t}=0$. First, note that $\mathbb{E}\left[T \mid X_{0}=n\right] \geq(1-o(1)) n \ln n$ because the process is at most as fast as the Coupon Collector process.
Hence, it is left to show an upper bound. Let $\varepsilon>0$ and $T_{\varepsilon n}$ be the first point in time t such that $X_{t}=\varepsilon n$. We can write $\mathbb{E}\left[T \mid X_{0}=n\right]=\mathbb{E}\left[T_{\varepsilon n} \mid X_{0}=n\right]+\mathbb{E}\left[T \mid X_{0}=\varepsilon n\right]$.
To compute $\mathbb{E}\left[T_{\varepsilon n} \mid X_{0}=n\right]$ define the random variables Y_{t} as

$$
Y_{t}:= \begin{cases}X_{t}, & \text { if } X_{t}>\varepsilon n \\ 0, & \text { otherwise }\end{cases}
$$

and denote by T_{Y} the first point in time t such that $Y_{t}=0$. We apply the Multiplicative Drift theorem with $\delta=1 /(2 n), s_{\text {min }}=\varepsilon n$, and $s_{0}=n$:

$$
\mathbb{E}\left[T_{\varepsilon n} \mid X_{0}=n\right]=\mathbb{E}\left[T_{Y} \mid Y_{0}=n\right] \leq \frac{1+\ln \frac{1}{\varepsilon}}{\frac{1}{2 n}}=\mathcal{O}(n) .
$$

Now we determine $\mathbb{E}\left[T \mid X_{0}=\varepsilon n\right]$. Let \mathcal{E} be the event that Alice loses all coupons. We have

$$
\begin{aligned}
\mathbb{E}\left[T \mid X_{0}=\varepsilon n\right] & =\left(1-\frac{1}{2 n}\right)^{\varepsilon n} \cdot \mathbb{E}\left[T \mid X_{0}=\varepsilon n \wedge \overline{\mathcal{E}}\right]+\left(1-\left(1-\frac{1}{2 n}\right)^{\varepsilon n}\right) \cdot \mathbb{E}\left[T \mid X_{0}=\varepsilon n \wedge \mathcal{E}\right] \\
& \leq \mathbb{E}\left[T \mid X_{0}=\varepsilon n \wedge \overline{\mathcal{E}}\right]+\frac{\varepsilon}{2} \cdot \mathbb{E}\left[T \mid X_{0}=\varepsilon n \wedge \overline{\mathcal{E}}\right]
\end{aligned}
$$

where we used Bernoulli's inequality in the last line. Note that $\mathbb{E}\left[T \mid X_{0}=\varepsilon n \wedge \overline{\mathcal{E}}\right]=(1+o(1)) n \ln n$, since conditioned on the event $\overline{\mathcal{E}}$ the process behaves like the Coupon Collector process. Furthermore, we can bound $\mathbb{E}\left[T \mid X_{0}=\varepsilon n \wedge \mathcal{E}\right] \leq 2 \mathbb{E}\left[T \mid X_{0}=n\right]$. Solving yields $\mathbb{E}\left[T \mid X_{0}=\varepsilon n\right] \leq(1+o(1)) n \ln n$.

Solution to Exercise 3

We consider the case $a \leq 1$. Define the random variables Y_{t} as

$$
Y_{t}:= \begin{cases}\ln X_{t}, & \text { if } X_{t}>0 \\ 0, & \text { otherwise }\end{cases}
$$

Note that Y_{t} is 0 if X_{t} is 0 or 1 . Hence, to show the lower bound for the Random Decline process, it suffices to show $\mathbb{E}\left[T \mid Y_{0}=\ln n\right]=\Omega(\ln n)$. The drift of $\left(Y_{t}\right)_{t \geq 0}$ is

$$
\begin{aligned}
\mathbb{E}\left[Y_{t}-Y_{t+1} \mid Y_{t}=\ln x\right] & =\ln x-\sum_{i=2}^{\lfloor a x\rfloor} \frac{\ln i}{1+\lfloor a x\rfloor} \\
& \leq \ln x-\frac{1}{1+\lfloor a x\rfloor} \cdot(\lfloor a x\rfloor \ln \lfloor a x\rfloor-\lfloor a x\rfloor) \\
& =\mathcal{O}(1)
\end{aligned}
$$

Thus, we can apply the Additive Drift theorem to obtain that $\mathbb{E}\left[T \mid Y_{0}=\ln n\right]=\Omega(\ln n)$. For $a>1$ note that we can couple the processes: Let $\left(X_{t}\right)_{t \geq 0}$ be the process with $a>1$ and $\left(X_{t}^{\prime}\right)_{t \geq 0}$ be the process with $a=1$. The coupling is as follows: if $X_{t+1} \leq X_{t}^{\prime}$ we set $X_{t+1}^{\prime}=X_{t+1}$ and otherwise $\left(X_{t}^{\prime}\right)_{t \geq 0}$ does a regular step. Hence, $X_{t} \geq X_{t}^{\prime}$ holds for all $t \geq 0$ and $\left(X_{t}\right)_{t \geq 0}$ can not be faster than $\left(X_{t}^{\prime}\right)_{t \geq 0}$.

Solution to Exercise 4

(i) If there is a weight $w_{i}<0$, then we can just apply the automorphism φ to the hypercube that flips 0 and 1 in the i-th bit, and replace the weight $w_{i}<0$ by $w_{i}^{\prime}:=-w_{i}>0$.
Note that then we have $f_{w}(x)-f_{w}(y)=f_{w^{\prime}}(\varphi(x))-f_{w^{\prime}}(\varphi(y))$ for all $x, y \in H_{n}$. Therefore, by setting $y=0$, we get $f_{w}(x)=f_{w^{\prime}}(\varphi(x))-f_{w^{\prime}}(\varphi(0))$ for all $x \in H_{n}$, so both problems are equivalent. Not only do they take the miminum in the same places, have the same optimum, but the optimization algorithm makes the same choices on both instances, modulo φ.
Similarly, changing the order of the bits does not change the problem.
(ii) The upper bound is trivial. For the lower bound, observe that for fixed i, the probability that we flip exactly the i-th bit is $1 / n \cdot(1-1 / n)^{n-1}$. We use the well-known formula $(1-x / n)^{n} \leq e^{-x} \leq$ $(1-x / n)^{n-1}$ for $x=1$. (It holds for all $x \geq 0$.) Now we sum over all i and obtain

$$
p_{0}=\left(1-\frac{1}{n}\right)^{n-1} \geq \frac{1}{e}
$$

(iii) For $a=0$ the statement is trivial. For $a>0$, we compute directly

$$
\begin{aligned}
\mathbb{E}\left[X_{t}-X_{t+1} \mid X_{t}=a\right] & \geq \mathbb{E}\left[X_{t}-X_{t+1} \mid X_{t}=a \text { and we flip exactly one bit. }\right] \cdot \frac{1}{e} \\
& =\frac{1}{e} \cdot \sum_{i \text {-th bit wrong }} \operatorname{Pr}[\text { flip exactly } i \text {-th bit }] \cdot w_{i} \\
& \geq \frac{1}{e n} \cdot \sum_{i \text {-th bit wrong }} w_{i} \\
& =\frac{a}{e n}
\end{aligned}
$$

(iv) We apply the Variable Drift theorem, where $s_{\min }=w_{\min }$ and $h(x)=x /(e n)$. We obtain

$$
\mathbb{E}\left[T \mid X_{0}=a\right] \leq \frac{w_{\min }}{h\left(w_{\min }\right)}+\int_{w_{\min }}^{a} \frac{1}{h(x)} d x=e n\left(1+\int_{w_{\min }}^{a} \frac{1}{x} d x\right)=e n\left(1+\log \left(\frac{a}{w_{\min }}\right)\right) .
$$

Observing that the starting value is $a=\sum_{i=1}^{n} w_{i}$ yields the result.

