Randomized Algorithms and Probabilistic Methods: Advanced Topics

Solution to Exercise 1

A proof can be found in the lecture notes of Randomized Algorithms and Probabilistic Methods.

Solution to Exercise 2

(a) Let A_{G} be the adjacency matrix of G, this is $A_{G} \in\{0,1\}^{n \times n}$ with $a_{i, j}=1$ iff $\{i, j\} \in E$ (we identify the vertices $V(G)$ with $[n])$. Let D be the diagonal matrix with $d_{i, i}=1 / \operatorname{deg}(i)$. Then the transition matrix is $P=A_{G} \cdot D$.
(b) The stationary distribution is $\pi=(\operatorname{deg}(1) / n, \ldots, \operatorname{deg}(n) / n)$. It is easy to see that $\pi P=\pi$:

$$
(\pi P)_{j}=\sum_{i=0}^{n} \pi_{i} \cdot p_{i, j}=\frac{1}{2 n} \sum_{\substack{i=0 \\ p_{i, j} \neq 0}}^{n} \operatorname{deg}(i) \cdot \frac{1}{\operatorname{deg}(i)}=\pi_{j} .
$$

If G is connected, then the stationary distribution is unique (the Markov chain is irreducible). Otherwise it is not: any convex combination of stationary distributions of random walks on the connected components is also a stationary distribution.
(c) If G is not bipartite, then the distribution of the random walker converges to the stationary distribution (the Markov chain is aperiodic). Otherwise it does not: if the random walker starts on the left partition of G, then after an even number of steps, he will always be on the left partition.

Solution to Exercise 3

(a) Let A_{G} be the adjacency matrix of G, this is $A_{G} \in\{0,1\}^{n \times n}$ with $a_{i, j}=1$ iff $(i, j) \in E$. The transition matrix is $P=1 / 2 A_{G}$. The Markoc chain is irreducible since G is strongly connected and aperiodic because of the self-loops. The stationary distribution is $\pi=\left(1_{n}, \ldots, 1 / n\right)$ by symmetry.
(b) We want to apply Theorem 2.2 from the lecture. First, we determine λ, the second largest eigenvalue of P (in absolute value). To do so write $P=1 / 2(I+M)$ and note that if λ_{M} is an eigenvalue of M, then $\lambda_{P}=\left(\lambda_{M}+1\right) / 2$ is an eigenvalue of P. To find the eigenvalues of M we must determine the roots of the characteristic polynomial $\operatorname{det}(M-I x)=x^{n}-1$. Hence, we see that the eigenvalues of M are the roots of unity $e^{2 \pi i \frac{k}{n}}$ for $0 \leq k \leq n$. Thus, the eigenvalues of P are $\left(e^{2 \pi i \frac{k}{n}}+1\right) / 2$ for $0 \leq k \leq n$. We find that $\lambda=\left(e^{2 \pi / n}+1\right) / 2$ and $|\lambda|=\sqrt{1 / 2+\cos (2 \pi / n) / 2}$. Using a Taylor approximation we see that $\cos (2 \pi / n) \leq 1-2 / n^{2}$ and therefore $|\lambda| \leq e^{-1 /\left(2 n^{2}\right)}$.
Second we need to show that the eigenvectors of P are orthogonal. Using the spectral theorem it suffices to show that P is normal, this is $P^{T} \cdot P=P \cdot P^{T}$. This holds iff M is normal and we see that this holds since $M^{T} \cdot M=M^{T} \cdot M=I$.
Finally, we can apply Theorem 2.2 to find that

$$
d(t) \leq \sqrt{n} e^{-t /\left(2 n^{2}\right)}
$$

We need that $\sqrt{n} e^{-t /\left(2 n^{2}\right)} \leq 1 / 4$ which is achieved by $t=\left\lceil n^{2} \ln n+2 n^{2} \ln 4\right\rceil$.

