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Solution to Exercise 1

Fix 0 ≤ δ < 1. For a set S ⊆ V with |S| ≤ |V |/2 denote by ES the event that E(S, S) ∈ (1 ± δ)|S||S|p
holds. We apply the Chernoff bound to get

Pr[ES ] ≥ 1− 2e−δ
2|S||S|p/3.

Now we use the the union bound over those sets S to get that for n large enough

Pr[∃S ⊆ V with |S| ≤ |V |/2 and ES ] ≤
n/2∑
k=0

(
n

k

)
2e−δ

2k(n−k)p/3

≤ 2

n/2∑
k=0

nke−δ
2knp/6

≤ 2

∞∑
k=0

e−k(δ
2np/6−logn)

≤ 2(
1

1− e−δ2np/6+logn
− 1)

n→∞→ 0

holds, since p ∈ ω(log n/n). Hence, we get that a.a.s. the edge expansion is

h(Gn,p) ≥
(1− δ)np

2
.

Solution to Exercise 2

The stationary distribution is uniform: πi = 1/(kn) for i ∈ V . The Markov chain is connected and
therefore irreducible, moreover since it has self loops and is undirected it is also aperiodic. Hence, it
converges to π. To apply the flow method, we have to route one unit of flow, for each pair (u, v) of vertices.
We do this as follows: if u and v are connected via an edge e, then we route the unit corresponding to
(u, v) directly over e. Otherwise, we distribute the flow over all shortes paths from u to v. Now we want
to bound the amount of flow on an edge e = {u, v}, with u ∈ Vi and v ∈ Vi+1 for 1 ≤ i < k. We get

f(e) = 2 + 2
(i− 1)n · (k − (i+ 1))n

n2
+ 2kn/n,

since the endpoints send two units, the pairs involving only one of the enpoints (at most 2kn many)
spread their flow over at least n paths, and the (i − 1)n · (k − (i + 1))n remaining pairs send 2 units
which are spread out among the n2 possible edges between Vi and Vi+1. We see that f(e) is maximized
for i − 1 = k/2 and we can bound it by f(e) ≤ k2/2, at least if k is large. This yields h(G) ≥ n/k by
Theorem 2.7 and therefore yields

tmix ≤ 16k2 log(2
√
nk)

Solution to Exercise 3



We denote by An the adjacency matrix of the hypercube of dimension n. Recall that we can construct
the n-th hypercube by taking two copies of the hypercube of dimension n− 1 and putting edges between
vertices with the same label. Hence, we can also construct the adjacency matrix inductively as follows:

An =

(
An−1 In−1
In−1 An−1

)
for n > 1 and A1 =

(
0 1
1 0

)
,

where here In−1 is the identity of dimension 2n−1. We will see that we can also construct the eigenvalues
recursively. It is easy to see that the eigenvalues of A1 are 1 and −1. Using the recursive definition of
An, we see that if v is an eigenvalue of An−1 with eigenvalue λ, then (v, v) and (v,−v) are eigenvectors
of An with eigenvalues λ + 1 and λ − 1. Moreover, it is easy to see that the eigenvectors constructed in
this way are linearly independent. Hence, the eigenvalues of An are n, n − 2, . . . ,−n + 2,−n. If we also
want to count the multiplicity we see that the multiplicity of the k-th eigenvalue of An is given as the
sum of the multiplicities of the k− 1-th and k-th eigenvalues of An−1. Hence, the multiplicity of the k-th
eigenvalue of An satisfies the recursen of the binomial coefficient and plugging in the start values we get
that it is

(
n
k

)
.

Solution to Exercise 4

(a) We assume that G is connected (an eigenvector of a connected componend yields an eigenvector
of P by padding zeros and the corresponding eigenvalue is the same). First, we show that if G is
bipartite, then P has eigenvalue −1. Let V1 and V2 be the partitions of the vertex set. We define π
by πv = deg(v)/(2|E|) for v ∈ V1 and πv = −deg(v)/(2|E|) for v ∈ V2. Then we see for v ∈ V1

(πTP )v =
∑
u∈V

πuPu,v =
∑

u|{u,v}∈E

−deg u

2|E|
· 1

deg(u)
= −πv

and analogously for v ∈ V2. Hence, π is an egenvector with eigenvalue −1. Second, we show that if P
has eigenvalue −1, then G is bipartite. Let π be an eigenvector of P with associated eigenvalue −1.
By the Perron-Frobenius Theorem, P has a positive eigenvector π with associated egenvalue 1. We
claim that |π| is an eigenvector with eigenvalue 1 as well, and therefore is a multiple of π and thus is
positive as well. This can be seen since

|π|T = | − πT | = |πTP | ≤ |πT |P

and multiplication with π shows that in fact equality holds, i.e., |πTP | = |πT |P . Now let V1 be the
set of vertices v with πv > 0 and V2 be the set of vertices v with πv < 0. Fix v ∈ V and note that
the above claim implies∣∣∣∣∣∑

u∈V1

|πu|Pu,v −
∑
u∈V2

|πu|Pu,v

∣∣∣∣∣ = |(πTP )v| = (|πT |P )v =
∑
u∈V1

|πu|Pu,v +
∑
u∈V2

|πu|Pu,v.

Since |π| > 0 and P ≥ 0, we see that either
∑
u∈V1

|πu|Pu,v or
∑
u∈V2

|πu|Pu,v must be 0. However,
this shows that v can either be connected to vertices from V1 or V2, bot not to both. If v ∈ V1 and
it is connected to only vertices in V1, then there exists a connected component whose vertices are
a subset of V1 contradicting the assumption that the graph is connected. Hence, a vertex in V1 can
only be connected to vertices in V2 and vice versa. But this shows that G is bipartite.

(b) For each component Ci with vertices Vi and endges Ei we define π(i) by π
(i)
v = 0 if v /∈ Vi and

π
(i)
v = deg(v)/(|Ei|). Obviously, this yields an eigenvector with eigenvalue 1 for each component

and those eigenvectors are pairwise orthogonal. Thus, the multiplicity of the eigenvalue 1 is at least
the number of connected components of G. However, if there was an additional eigenvector with
eigenvalue 1 which is linearly independent to all the π(i), then there must exist a component with
two linearly independent eigenvalues with eigenvalue 1 contradicting the Perron-Frobenius Theorem.


