Randomized Algorithms and Probabilistic Methods: Advanced Topics

Solution to Exercise 1

- (a) The row/clumn/symbol-swaps commute. Hence, there are at most $n!^3$ vertices reachable from each vertex. However, $n!^3 \ll ((1+o(1))(n/e^2))^{n^2}$.
- (b) Consider an order-*n* cyclic latin square (the addition table of \mathbb{Z}_n), where *n* is prime. Fix two rows i_1 and i_2 . Look at the induced permutation on the symbols: if we follow the permutation, there is an offset of $d := i_2 i_1$. Going along a cycle of length *l* we have that $n|l \cdot d$. Since *n* is prime we have n|l or n|d. However, d < n and $l \leq n$ imply that l = n and the permutation has only one cycle. Swapping it corresponds to a row-swap. Thus, by (a) a component containing a cyclic Latin square has size at most n!.
- (c) We consider an order-*n* cyclic latin square (the addition table of \mathbb{Z}_n), where *n* is prime an show that it does not contain a non-trivial Latin subsquare. This shows that row/column/symbol swaps in Latin subsquares corresponds to row/column/symbol swaps and therefore by (a) a component containing a cyclic Latin square has size at most $n!^3$. First, we show that if it contains a Latin subsquare, then *n* is not prime. Let $\{i_1, \ldots, i_k\}$ be the row- and $\{j_1, \ldots, j_k\}$ be the column-indices of an order-*k* Latin subsquare. We see that $\sum_{k=1}^{k} i_1 + j_x = \sum_{x=1}^{k} i_2 + j_x$ and therefore $ki_1 = ki_2$ which implies that $n|k \cdot (i_1 i_2)$ and since *n* is prime n|k or $n|(i_1 i_2)$. However, since $i_1 i_2 < n$ and $k \leq n$ we see that k = n and the Latin subsquare is not a proper subsquare. Second, we show that if *n* is not prime, then it indeed contains a Latin subsquare. If *n* is not prime, then there are only the elements of *H* in the subsquare. Now assume that there exists a row (column) *i* and two columns (rows) j_1, j_2 in the subsquare such that $i + j_1 = i + j_2$. Since we look at a subgoup, we have $j_1 = j_2$ and the subsquare is Latin.