Randomized Algorithms and Probabilistic Methods: Advanced Topics

Solution to Exercise 1

(a) The row/clumn/symbol-swaps commute. Hence, there are at most $n!^{3}$ vertices reachable from each vertex. However, $n!^{3} \ll\left((1+o(1))\left(n / e^{2}\right)\right)^{n^{2}}$.
(b) Consider an order- n cyclic latin square (the addition table of \mathbb{Z}_{n}), where n is prime. Fix two rows i_{1} and i_{2}. Look at the induced permutation on the symbols: if we follow the permutation, there is an offset of $d:=i_{2}-i_{1}$. Going along a cycle of length l we have that $n \mid l \cdot d$. Since n is prime we have $n \mid l$ or $n \mid d$. However, $d<n$ and $l \leq n$ impliy that $l=n$ and the permutation has only one cycle. Swapping it corresponds to a row-swap. Thus, by (a) a component containing a cyclic Latin square has size at most n !.
(c) We consider an order- n cyclic latin square (the addition table of \mathbb{Z}_{n}), where n is prime an show that it does not contain a non-trivial Latin subsquare. This shows that row/column/symbol swaps in Latin subsquares corresponds to row/column/symbol swaps and therefore by (a) a component containing a cyclic Latin square has size at most $n!^{3}$. First, we show that if it contains a Latin subsquare, then n is not prime. Let $\left\{i_{1}, \ldots, i_{k}\right\}$ be the row- and $\left\{j_{1}, \ldots, j_{k}\right\}$ be the column-indices of an order- k Latin subsquare. We see that $\sum_{x=1}^{k} i_{1}+j_{x}=\sum_{x=1}^{k} i_{2}+j_{x}$ and therefore $k i_{1}=k i_{2}$ which implies that $n \mid k \cdot\left(i_{1}-i_{2}\right)$ and since n is prime $n \mid k$ or $n \mid\left(i_{1}-i_{2}\right)$. However, since $i_{1}-i_{2}<n$ and $k \leq n$ we see that $k=n$ and the Latin subsquare is not a proper subsquare. Second, we show that if n is not prime, then it indeed contains a Latin subsquare. If n is not prime, then there exists a subgroup $H \subset \mathbb{Z}_{n}$. We show that this H forms a Latin subsquare. Since the H is closed, there are only the elements of H in the subsquare. Now assume that there exists a row (column) i and two columns (rows) j_{1}, j_{2} in the subsquare such that $i+j_{1}=i+j_{2}$. Since we look at a subgoup, we have $j_{1}=j_{2}$ and the subsquare is Latin.

