Randomized Algorithms and Probabilistic Methods: Advanced Topics

Solution to Exercise 1

Let $C H$ be the convex hull of Q_{1}. We show $K_{1} \subseteq \bigcup_{p \in C H} B_{2}(p / 2,\|p / 2\|)$. This means that if for each $p \in C H$ we place an Euclidean Ball of radius $\|p / 2\|$ on the center of the line between the origin and p, then all of these balls together cover K_{1}. To see this fix some $p \in C H$ and a point $x \notin B_{2}(p / 2,\|p / 2\|)$. Since x is not in $B_{2}(p / 2,\|p / 2\|)$, we have that $\|x-p / 2\|>\|p / 2\|$ an therefore $\langle x, p\rangle<\|x\|^{2}$. But this means, that p is in the open halfspace H bounded by the halfplane through x perpendicular to x. However, if x is not in any of the balls, then all $p \in C H$ are in H and therefore $C H \subseteq H$. But this shows that $x \notin C H$.
Now note that the infinity norm ball is a superset of the Euclidean norm ball. Thus

$$
\operatorname{vol}\left(K_{1}\right) \leq \bigcup_{p \in C H} B_{2}(p / 2,\|p / 2\|) \leq \bigcup_{p \in C H} B(p / 2,\|p / 2\|)=|C H| \cdot(2\|p / 2\|)^{n} \leq \operatorname{poly}(n) n^{n} .
$$

On the other hand $n B \subseteq K_{2}$ and therefore $\operatorname{vol}\left(K_{2}\right) \geq(2 n)^{n}$ proving the claim.

Solution to Exercise 2

We describe an algorithm which computes the transformation f. Start with the right simplex $S:=$ $C H\left(0, e_{1}, \ldots, e_{n}\right)$, where $C H$ denotes the convex hull and $\left(e_{i}\right)_{i=1}^{n}$ is the standard basis of \mathbb{R}^{n}. Note that $S \subseteq B \subseteq K$. Now while there exists a point $p \in K$ such that $p_{i} \geq\left(1+1 / n^{2}\right)$ set $S^{\prime}=$ $C H\left(0, e_{1}, \ldots, p_{i}, \ldots, e_{n}\right)$. Observe that the volume of S^{\prime} exceeds the volume of S by a factor of at least $\left(1+1 / n^{2}\right)$. Then, rescale such that S^{\prime} becomes the simplex again and note that thereby the volume of K shrinks by a factor of at least $\left(1+1 / n^{2}\right)$ (this builds the transformation f, however for simplicity we always denote the new K again by K). Since $S \subseteq K$ during the entire process, the number of iterations is bounded by poly (n). At the end of the algorithm we know $B^{\prime} \subset S \subseteq K \subseteq\left(1+1 / n^{2}\right) B$, where B^{\prime} is the infinity norm ball with radius $1 /(2 n)$ centered at $1 /(2 n) \mathbf{1}$, where $\mathbf{1}$ is the all 1 's vector. Now we rescale (and shift) such that B^{\prime} becomes B. This yields $B \subseteq K \subseteq 2 n\left(1+1 /(2 n)+1 / n^{2}\right) B \subseteq 2(n+1) B$.

