Randomized Algorithms and Probabilistic Methods: Advanced Topics

Solution to Exercise 1

Let G be a d-regular expander graph on n vertices with spectral expansion $\lambda<d$. Let H be any (spanning) subgraph of G obtained by removing $m \geq 0$ edges. We will prove that H contains a component of size at least $n-4 m /(d-\lambda)$. We distinguish between two cases.
If H contains a component X of size at least $n / 2$, then by the Cheeger inequality and the fact that X is a component of H, we have

$$
2 m \geq 2 e_{G}(X, V(G) \backslash X) \geq(d-\lambda)(n-|X|)
$$

Rearranging, we get $|X| \geq n-2 m /(d-\lambda)$, so X is the component of the desired size.
Now assume that all components of H have size smaller than $n / 2$. Let $X_{1}, X_{2}, \ldots, X_{k}$ be the components of H. By the Cheeger inequality, we have

$$
e_{G}\left(X_{i}, V(G) \backslash X_{i}\right) \geq(d-\lambda)\left|X_{i}\right| / 2
$$

for every $1 \leq i \leq k$. Since the sets X_{i} are components of H, we get

$$
2 m \geq \sum_{i=1}^{k} e_{G}\left(X_{i}, V(G) \backslash X_{i}\right) \geq \sum_{i=1}^{k}(d-\lambda)\left|X_{i}\right| / 2=(d-\lambda) n / 2
$$

Then $m \geq(d-\lambda) n / 4$, and H trivially contains a component of size $0 \geq n-4 m /(d-\lambda)$.

Solution to Exercise 2

Let G be a d-regular graph on n vertices with spectral expansion $\lambda<d$.
Fix any $v \in V(G)$. Suppose that, for some $i \geq 0$, we have $|B(v, i)| \leq n / 2$. Then the Cheeger inequality states that

$$
e(B(v, i), V(G) \backslash B(v, i)) \geq(d-\lambda)|B(v, i)| / 2
$$

In this case, since G is d-regular, get

$$
|B(v, i+1)| \geq|B(v, i)|+d^{-1} e(B(v, i), V(G) \backslash B(v, i)) \geq\left(1+\frac{d-\lambda}{2 d}\right)|B(v, r)|
$$

Moreover, if $|B(v, i)| \geq n / 2$, then we also have $|B(v, r)| \geq n / 2$ for all $r \geq i$. Since $|B(v, 0)|=1$, we obtain by induction that

$$
|B(v, r)| \geq \min \left\{\left(1+\frac{d-\lambda}{2 d}\right)^{r}, n / 2\right\} .
$$

Let $r_{0}:=\left\lceil\log (n / 2) / \log \left(1+\frac{d-\lambda}{2 d}\right)\right\rceil$. Then for every vertex v, we have $\left|B\left(v, r_{0}\right)\right| \geq n / 2$. In particular, any two vertices and have distance at most $2 r_{0}+1$ (here we use that since $\lambda<d, G$ must be connected). Thus, if we choose the constant $0 \leq c \leq(d-\lambda) /(2 d)$ so small that $(1+c)^{2 r_{0}} \leq n / 2$ holds for all $n \geq 3$ (such a choice is possible), then we have

$$
|B(v, r)| \geq \min \left\{(1+c)^{r}, n\right\}
$$

for all vertices $v \in V(G)$ and all $r \geq 0$, provided that G has at least three vertices. Indeed, if $|B(v, r)| \leq$ $n / 2$, then this follows from the arguments above. It is also clearly true if $|B(v, r)|=n$. Finally, if $n / 2<|B(v, r)|<n$, then $r \leq 2 r_{0}$ and so it is true because $(1+c)^{r} \leq(1+c)^{2 r_{0}} \leq n / 2<|B(v, r)|$.
If G has only one or two vertices, it is very easy to check that the same statement still holds.

