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Solution to Exercise 1
For the one bound, we consider the cycle Cn on n vertices. In another exercise, we saw that the eigenvalues
of Cn are 2 cos(2πk/n), where k = 0, 1, . . . , n−1. Thus, for Cn (which is d-regular with d = 2), the spectral
gap satisfies

d− λ2 = 2− 2 cos(2π/n) ≤ 2− 2
(
1− (2π)2

2!n2

)
=

4π2

n2
.

The Cheeger constant of Cn is 4/(n− 1) if n is odd and 4/n if n is even, where the corresponding cut is
given by a cycle segment of length bn/2c. Thus, in any case, we have

d− λ2 = O(h(g)2).

For the other bound, we consider the n-dimensional hypercube Hn. Its eigenvalues are also known from
a previous exericse, and the eigenvalue gap is

d− λ2 = n− (n− 2) = 2.

However, by considering S = {x ∈ {0, 1}n : x0 = 0}, we see that

h(Hn) ≤ e(S, S)/|S| = 1,

so in this example, we have d− λ ≥ 2h(Hn).

Solution to Exercise 2
If d = 1, then the graphs must all be perfect matchings, which are not even connected (so d− λ = 0).

If d = 2, then the graphs must be a disjoint unions of cycles. For a graph to be an expander, it must
additionally be connected, so in fact each graph in the family must be a cycle. However, cycles are not
expanders, as we proved in Exercise 1 that d− λ ≤ 4π2/n2 → 0.

Solution to Exercise 3
Let µ ∈ Rn be the vector in which all entries are 1. Let AG be the adjacency matrix of G. We know
that AGµ = dµ, and that d is the largest eigenvalue of AG. Let v(1), . . . , v(n) be a basis of orthogonal
eigenvectors of AG with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, where v(1) = µ and λ1 = d.

Note that the adjacency matrix of G is

AG = µµT − I −AG.

For i ≥ 2, we have µT v(i) = 0 and so

AGv
(i) = µµT v(i) − v(i) −AGv

(i) = −v(i) − λv(i) = (−1− λ)v(i).

Moreover, as G is (n− 1− d)-regular, we know that µ is an eigenvector of G with eigenvalue n− 1− d.

Thus the eigenvectors of AG are exactly the eigenvectors of AG, and the eigenvalues of AG are

n− 1− d ≥ −1− λn ≥ −1− λn−1 ≥ · · · ≥ −1− λ2.

The first inequality holds just because G is (n− 1− d)-regular.


