Randomized Algorithms and Probabilistic Methods: Advanced Topics

Solution to Exercise 1

For the one bound, we consider the cycle C_{n} on n vertices. In another exercise, we saw that the eigenvalues of C_{n} are $2 \cos (2 \pi k / n)$, where $k=0,1, \ldots, n-1$. Thus, for C_{n} (which is d-regular with $d=2$), the spectral gap satisfies

$$
d-\lambda_{2}=2-2 \cos (2 \pi / n) \leq 2-2\left(1-\frac{(2 \pi)^{2}}{2!n^{2}}\right)=\frac{4 \pi^{2}}{n^{2}}
$$

The Cheeger constant of C_{n} is $4 /(n-1)$ if n is odd and $4 / n$ if n is even, where the corresponding cut is given by a cycle segment of length $\lfloor n / 2\rfloor$. Thus, in any case, we have

$$
d-\lambda_{2}=\mathcal{O}\left(h(g)^{2}\right)
$$

For the other bound, we consider the n-dimensional hypercube \mathbb{H}_{n}. Its eigenvalues are also known from a previous exericse, and the eigenvalue gap is

$$
d-\lambda_{2}=n-(n-2)=2 .
$$

However, by considering $S=\left\{x \in\{0,1\}^{n}: x_{0}=0\right\}$, we see that

$$
h\left(\mathbb{H}_{n}\right) \leq e(S, \bar{S}) /|S|=1
$$

so in this example, we have $d-\lambda \geq 2 h\left(\mathbb{H}_{n}\right)$.

Solution to Exercise 2

If $d=1$, then the graphs must all be perfect matchings, which are not even connected (so $d-\lambda=0$).
If $d=2$, then the graphs must be a disjoint unions of cycles. For a graph to be an expander, it must additionally be connected, so in fact each graph in the family must be a cycle. However, cycles are not expanders, as we proved in Exercise 1 that $d-\lambda \leq 4 \pi^{2} / n^{2} \rightarrow 0$.

Solution to Exercise 3

Let $\mu \in \mathbb{R}^{n}$ be the vector in which all entries are 1 . Let A_{G} be the adjacency matrix of G. We know that $A_{G} \mu=d \mu$, and that d is the largest eigenvalue of A_{G}. Let $v^{(1)}, \ldots, v^{(n)}$ be a basis of orthogonal eigenvectors of A_{G} with corresponding eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, where $v^{(1)}=\mu$ and $\lambda_{1}=d$.
Note that the adjacency matrix of \bar{G} is

$$
A_{\bar{G}}=\mu \mu^{T}-I-A_{G}
$$

For $i \geq 2$, we have $\mu^{T} v^{(i)}=0$ and so

$$
A_{\bar{G}} v^{(i)}=\mu \mu^{T} v^{(i)}-v^{(i)}-A_{G} v^{(i)}=-v^{(i)}-\lambda v^{(i)}=(-1-\lambda) v^{(i)}
$$

Moreover, as \bar{G} is $(n-1-d)$-regular, we know that μ is an eigenvector of \bar{G} with eigenvalue $n-1-d$. Thus the eigenvectors of A_{G} are exactly the eigenvectors of $A_{\bar{G}}$, and the eigenvalues of $A_{\bar{G}}$ are

$$
n-1-d \geq-1-\lambda_{n} \geq-1-\lambda_{n-1} \geq \cdots \geq-1-\lambda_{2}
$$

The first inequality holds just because \bar{G} is $(n-1-d)$-regular.

