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Solution to Exercise 1

We divide the process into two phases: the first phase when there are still isolated vertices, and the second
phase when there are no such vertices any more.

First phase. Our first goal is to estimate the duration of the first phase. Let Z0(m) denote the number
of isolated vertices in Gm. We have Z0(0) = n and for x > 0 we have

E[Z0(m+ 1)− Z0(m) | Z0(m) = x] = −1− x/n,

since we will connect an isolated vertex with a randomly chosen other vertex, which is isolated with
probability x/n. Thus, for z0(t) being the solution of z0(0) = 1 and

z′0(t) = −1− z0(t), (1)

the theorem from the lecture tells us that whp

Z0(tn) = nz0(t) + o(n)

holds for all t such that Z0(t) > 0.

We can solve the differential equation (1) using the method of variation of constants. The solution
to the homogeneous system x′(t) = −x(t) is x(t) = e−t. Assuming now z0(t) = c(t)e−t, we obtain
z′0(t) = c′(t)e−t−z0(t). To match (1) we need c′(t)e−t = −1 and c(0)e−0 = 1, i.e., c(t) = 2−et. Therefore
z0(t) = (2− et)e−t = 2e−t − 1 is the unique solution of (1).

In particular, as 2e−t− 1 = 0 only in t = ln 2, we obtain that the time when all isolated vertices are gone
is close to n ln 2.

To study the next phase, we also need to know the number of degree-one vertices at the end of the
first phase. This can also be obtained with differential equations. First, let Z1(m) denote the number of
vertices of degree one in Gm. We have Z1(0) = 0 and for x0 > 0,

E[Z1(m+ 1)− Z1(m) | Z1(m) = x1 and Z0(m) = x0] = 1 + x0/n− x1/n,

since every round a vertex goes from being isolated to having degree one, and there is a probability of
x0/n to turn an additional degree zero vertex to degree one, and a probability of x1/n to turn a vertex
with degree one into a vertex with degree two. We thus get the differential equation z1(0) = 0 and z′1(t) =
1+z0(t)−z1(t) = 2e−t−z1(t). Again the solution is obtained by variation of constants. The homogeneous
system has the solution e−t, so we use the Ansatz z1(t) = c(t)e−t, giving z′1(t) = c′(t)e−t − z0(t). This
time we want c′(t)e−t = 2e−t and c(0)e−0 = 0, i.e., c(t) = 2t. Thus we have

Z1(tn) = nz1(t) + o(n) = n2te−t, (2)

which is valid for all t such that Z0(tn) > 0.

In particular, since the first phase whp ends around time n ln 2, we get that at the beginning of the second
phase, there are n ln 2 + o(n) many vertices of degree one whp.



Second phase. In the second phase, we start with no isolated vertices and n ln 2+o(n) vertices of degree
one. For x > 0 we have

E[Z1(m+ 1)− Z1(m) | Z1(m) = x and Z0(m) = 0] = −1− x/n.

From this, we get the differential equation z1(t) = ln 2 and z′1(t) = −1 − z1(t). The solution can be
determined as before to be

z1(t) = (1 + ln 2)e−t − 1.

The second phase ends whp when z1(t) = 0, i.e., when

t = ln(1 + ln 2).


