Randomized Algorithms and Probabilistic Methods: Advanced Topics

Solution to Exercise 1

Let R_{t} denote the number of red balls at time t, let B_{t} denote the number of blue balls at time t, and let $X_{t}:=R_{t}-n$. Initially, $X_{0}=s_{0}:=n$. Let T be the smallest integer $t>0$ for which $X_{t}=0$. We need to compute the drift

$$
\Delta(a):=\mathbb{E}\left[X_{t}-X_{t+1} \mid X_{t}=a\right] .
$$

Consider a fixed round $t<T$. Then

$$
\mathbb{E}\left[R_{t}-R_{t+1} \mid R_{t}\right]=\frac{R_{t}}{2 n}-\frac{B_{t}}{2 n}=\frac{X_{t}+n-\left(2 n-\left(X_{t}+n\right)\right)}{2 n}=\frac{X_{t}}{n}
$$

so $\Delta(a)=a / n$.
By the multiplicative drift theorem, $\mathbb{E}\left[T \mid X_{0}=n\right] \leq n \ln n+n$ and

$$
\operatorname{Pr}[T>\lceil n \ln n+c n\rceil] \leq e^{-c} .
$$

Solution to Exercise 2

Let X_{t} be the number of pictures that Alice does not own an odd number of times. Initially, $X_{0}=n$. Let T be the first round for which $X_{t}=0$. The drift of X_{t} is

$$
\Delta(a)=\mathbb{E}\left[X_{t}-X_{t+1} \mid X_{t}=a\right]=\frac{a(a-1)}{n^{2}}+\frac{a}{2 n}
$$

for all $a>0$.
Let $c(x)=x-2$. Then we have $X_{t} \geq c\left(X_{t+1}\right)$. Moreover, for $a>0$,

$$
\Delta(a) \leq h(c(a))
$$

where $h(x)=\Delta(x+2)$.
We have

$$
\frac{1}{\Delta(a)}=\frac{2 n^{2}}{2 a(a-1)+n a}=\frac{2 n^{2}}{a(2 a+n-2)}=\frac{2 n^{2}}{a(n-2)}-\frac{4 n^{2}}{(2 a+n-2)(n-2)}
$$

By the lower-bound version of the variable drift theorem,

$$
\mathbb{E}[T] \geq \int_{1}^{n} \frac{\mathrm{~d} x}{h(x)}=\int_{3}^{n+2} \frac{\mathrm{~d} x}{\Delta(x)}=\frac{2 n^{2}}{n-2}[\ln (x)-\ln (x+n / 2-1)]_{3}^{n+2}
$$

Therefore,

$$
\mathbb{E}[T] \geq \frac{2 n^{2}}{n-2}(\ln (n+2)-\ln 3-\ln (n+2+n / 2-1)+\ln (n / 2+2))=2 n \ln n+\mathcal{O}(n)
$$

The upper bound is similar.

Solution to Exercise 3

Let $g(x)=\ln x \ln \ln x$ and define

$$
Y_{t}= \begin{cases}g\left(X_{t}\right) & \text { if } X_{t} \geq e \\ 0 & \text { otherwise }\end{cases}
$$

Let T be the first point in time where $Y_{T}=0$. Note that this is also the first point in time where X_{T} goes below e. Thus it suffices to show that $\mathbb{E}[T]=\Omega(\ln n \ln \ln n)$.
(a) Let us compute the drift

$$
\Delta(a)=\mathbb{E}\left[Y_{t}-Y_{t+1} \mid Y_{t}=a\right]
$$

Fix any $a>0$ and let $x=g^{-1}(a)$. We have

$$
\Delta(a)=a-\sum_{i=3}^{\lfloor e x\rfloor} \frac{g(i)}{1+\lfloor e x\rfloor},
$$

by conditioning on the different possible values of X_{t+1}. We can bound

$$
\sum_{i=3}^{\lfloor e x\rfloor} g(i) \geq \int_{e}^{e x} g(z) \mathrm{d} z-g(e x)
$$

and

$$
\frac{1}{1+\lfloor e x\rfloor} \geq \frac{1}{2+e x} \geq \frac{1}{e x}-\frac{2}{e^{2} x^{2}}
$$

Combining everything,

$$
\begin{equation*}
\Delta(a) \leq a-\left(\frac{1}{e x}-\frac{2}{e^{2} x^{2}}\right)\left(\int_{e}^{e x} g(z) \mathrm{d} z-g(e x)\right)=a-\frac{1}{e x} \int_{e}^{e x} g(z) \mathrm{d} z+o(1) \tag{1}
\end{equation*}
$$

as $x \rightarrow \infty$.
The next step is to bound the integral of $g(z)$. Let $a(z)=z \ln z-z$ and let $b(x)=\ln \ln z$. Observe that $a^{\prime}(z)=\ln z$. Integrating by parts,

$$
\int_{e}^{e x} g(z) \mathrm{d} z=\int_{e}^{e x} a^{\prime}(z) b(z) \mathrm{d} z=[a(z) b(z)]_{z=e}^{e x}-\int_{e}^{e x} a(z) b^{\prime}(z) \mathrm{d} z
$$

Since $a(z) b^{\prime}(z)=(z \ln z-z) /(z \ln z)=1-1 / \ln z$, we can simply upper bound

$$
\int_{e}^{e x} a(z) b^{\prime}(z) \mathrm{d} x \leq \int_{e}^{e x} 1 \mathrm{~d} x \leq e x
$$

Therefore, we obtain

$$
\int_{e}^{e x} g(z) \mathrm{d} z \geq(e x \ln (e x)-e x) \ln \ln (e x)-e x=e x \cdot g(e x)-e x \ln \ln x-e x .
$$

Plugging this into (1), we get

$$
\Delta(a) \leq a-g(e x)+\ln \ln x+1+o(1)
$$

Since

$$
g(e x)=(1+\ln x) \ln (1+\ln x)=\ln \ln x+\ln x \ln \ln x+o(1),
$$

and $a=g(x)=\ln x \ln \ln x$, this gives

$$
\Delta(a) \leq 1+o(1)
$$

(b) Let $C>0$ be such that $\Delta(a)<C$ for all $a>0$. The Theorem 1.1 immediately gives

$$
\mathbb{E}[T] \geq Y_{0} / C=g(n) / C=(\ln n \ln \ln n) / C
$$

under the assumption that $\lim _{t \rightarrow \infty} \mathbb{E}\left[X_{t}\right]=0$.
(c) Let $C>0$ be such that $\Delta(a)<C$ for all $a>0$. Then, as in the proof of Theorem 1.1, we have

$$
\operatorname{Pr}[T>t] \geq \mathbb{E}\left[Y_{t}-Y_{t+1}\right] / C
$$

Therefore

$$
C \mathbb{E}[T] \geq \sum_{t=0}^{\infty} C \operatorname{Pr}[T>t] \geq \sum_{t=0}^{t_{0}} C \operatorname{Pr}[T>t] \geq \sum_{t=0}^{t_{0}} \mathbb{E}\left[Y_{t}\right]-\mathbb{E}\left[Y_{t+1}\right]=\mathbb{E}\left[Y_{0}\right]-\mathbb{E}\left[Y_{t_{0}+1}\right]
$$

In particular (taking limsup on both sides),

$$
C \mathbb{E}[T] \geq \mathbb{E}\left[Y_{0}\right]-\liminf _{t \rightarrow \infty} \mathbb{E}\left[Y_{t}\right]
$$

Since $Y_{0}=\ln n \ln \ln n$, the claim follows.
(d) Assume that $\liminf _{t \rightarrow \infty} \mathbb{E}\left[Y_{t}\right]>0$. Then there must exist some δ and some positive integer t_{0} such that for all $t \geq t_{0}$, we have $\mathbb{E}\left[Y_{t}\right] \geq \delta$.
We have

$$
\operatorname{Pr}\left[Y_{t}>0\right]=\frac{\mathbb{E}\left[Y_{t}\right]}{\mathbb{E}\left[Y_{t} \mid Y_{t}>0\right]}
$$

Note that, deterministically,

$$
Y_{t} \leq g\left(n e^{t}\right)=\ln \left(n e^{t}\right) \ln \ln \left(n e^{t}\right)=(t+\ln n) \cdot(\ln (t+\ln n)
$$

Therefore, if t_{0} is sufficiently large, then for all $t \geq t_{0}$,

$$
\operatorname{Pr}\left[Y_{t}>0\right] \geq \frac{\delta}{(2 t) \ln (2 t)}
$$

From this, we obtain

$$
\mathbb{E}[T]=\sum_{t=0}^{\infty} \operatorname{Pr}[T>t]=\sum_{t=0}^{\infty} \operatorname{Pr}\left[Y_{t}>0\right] \geq \sum_{t=t_{0}}^{\infty} \frac{\delta}{(2 t \ln (2 t)}=\infty
$$

