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Solution to Exercise 1

Let R; denote the number of red balls at time t, let B; denote the number of blue balls at time ¢, and let
X := Ry — n. Initially, Xg = sg := n. Let T be the smallest integer ¢t > 0 for which X; = 0. We need to
compute the drift

A(a) = ]E[Xt — Xt+1 | Xt = CL}.

Consider a fixed round ¢ < T. Then

R B Xi+n—-—02n— (X +n X
E[Rt—Rt+1|Rt]:2TﬂtL—2T;: - (2n (X, )):?t,

so A(a) = a/n.
By the multiplicative drift theorem, E[T | Xg = n] < nlnn + n and

Pr[T > [nlnn+cn]] <e™“.

Solution to Exercise 2

Let X; be the number of pictures that Alice does not own an odd number of times. Initially, Xy = n. Let
T be the first round for which X; = 0. The drift of X} is

ala—1 a
A(a):E[Xt—Xt+1|Xt:a]:%+%

for all a > 0.

Let ¢(x) = x — 2. Then we have X; > ¢(Xy41). Moreover, for a > 0,
A(a) < h(c(a)),
where h(z) = A(z + 2).

We have
1 2n? o2n? 2n2 4n?

A(a) B 2a(a —1)+na a2a+n—-2) a(n—2) (2a+n—2)(n—2)

By the lower-bound version of the variable drift theorem,

" dx "2 g 2n? n+2
E[T]Z/l m:/3 A(:E):n—Q 1n(x)—ln(x—|—n/2—1)}3 .

Therefore,

2n?

E[T] > —

<ln(n+2) —n3-In(n+2+n/2—1) +1n(n/2+2)) =2nlnn + O(n).

The upper bound is similar.



Solution to Exercise 3

Let g(z) = InzInlnz and define

Y, — g(Xt) if Xt > e,
b 0 otherwise.

Let T be the first point in time where Y7 = 0. Note that this is also the first point in time where Xr
goes below e. Thus it suffices to show that E[T] = Q(lnnlnlnn).

(a) Let us compute the drift
A() = E[Y; ~ Yip | Vi = ]

Fix any a > 0 and let z = g~1(a). We have

. & 40
@=a-y 2

i=3
by conditioning on the different possible values of X;;1. We can bound

lex] ex
S o)z [ o:)dx - glea)

=3

and
1 1 1 2
> > —

1+ [ex] = 24ex = ex €212

Combining everything,

s (- ) ([Toa-gen) —a- L [Toaon, )

ex e‘x ex J.
as T — 00.

The next step is to bound the integral of g(z). Let a(z) = zlnz — z and let b(z) = Inln z. Observe
that a’(z) = In z. Integrating by parts,

/:Ig(z) dz = /:GC d'(2)b(2) dz = [a(2)b(2)] ., — /:7” a(2)'(2) dz.

Since a(2)b'(z) = (¢#lnz — z)/(2lnz) =1 —1/In z, we can simply upper bound

/ a(2)V' (z) dx < / 1dz < ex.
Therefore, we obtain

/ g(2)dz > (exn(ex) — ex)Inln(ex) — ex = ex - g(ex) — exlnlnz — ex.

Plugging this into (1), we get
A(a) <a—g(ex) +Inlnz + 1+ o(1).

Since
glez) =(1+nz)In(l+nz)=lnlnz+nzlnlnz + o(1),

and a = g(z) = Inzlnlnz, this gives
Aa) <1+ 0(1).

(b) Let C > 0 be such that A(a) < C for all @ > 0. The Theorem 1.1 immediately gives
E[T] > Yy/C = g(n)/C = (lnnlnlnn)/C,

under the assumption that lim; . E[X¢] = 0.



(¢) Let C' > 0 be such that A(a) < C for all @ > 0. Then, as in the proof of Theorem 1.1, we have
Pr[T > t] > E[Y; — Yi41]/C.
Therefore
%) to
CE[T] > Y CPr[T > > CPr[T > > E[V] - E[Yiy1] = E[Yo] - E[Ys41].
t=0 t=0 t=0
In particular (taking limsup on both sides),

CE[T] > E[Yo] - lim inf E[Y;].

Since Yy = lnnlnlnn, the claim follows.

(d) Assume that liminf; ,oo E[Y;] > 0. Then there must exist some § and some positive integer to such
that for all ¢ > ¢y, we have E[Y;] > 4.
We have E[Y]
PrlY; >0 = —— 4
0= gy s
Note that, deterministically,
Y; < g(ne') = In(ne') Inln(ne') = (¢t +Inn) - (In(t + Inn).

Therefore, if t( is sufficiently large, then for all ¢ > ¢,

5
Pr[Y; U —
>0 2 Gmaey
From this, we obtain
o0 o0 o0 5
E[T] =Y PrT>#=> Pr[Y; >0/ > G~ ™
t=0 t=0 t=to



