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Solution to Exercise 1

Let Rt denote the number of red balls at time t, let Bt denote the number of blue balls at time t, and let
Xt := Rt − n. Initially, X0 = s0 := n. Let T be the smallest integer t > 0 for which Xt = 0. We need to
compute the drift

∆(a) := E[Xt −Xt+1 | Xt = a].

Consider a fixed round t < T . Then

E[Rt −Rt+1 | Rt] =
Rt

2n
− Bt

2n
=
Xt + n− (2n− (Xt + n))

2n
=
Xt

n
,

so ∆(a) = a/n.

By the multiplicative drift theorem, E[T | X0 = n] ≤ n lnn+ n and

Pr[T > dn lnn+ cne] ≤ e−c.

Solution to Exercise 2

Let Xt be the number of pictures that Alice does not own an odd number of times. Initially, X0 = n. Let
T be the first round for which Xt = 0. The drift of Xt is

∆(a) = E[Xt −Xt+1 | Xt = a] =
a(a− 1)

n2
+

a

2n

for all a > 0.

Let c(x) = x− 2. Then we have Xt ≥ c(Xt+1). Moreover, for a > 0,

∆(a) ≤ h(c(a)),

where h(x) = ∆(x+ 2).

We have
1

∆(a)
=

2n2

2a(a− 1) + na
=

2n2

a(2a+ n− 2)
=

2n2

a(n− 2)
− 4n2

(2a+ n− 2)(n− 2)

By the lower-bound version of the variable drift theorem,

E[T ] ≥
∫ n

1

dx

h(x)
=

∫ n+2

3

dx

∆(x)
=

2n2

n− 2

[
ln(x)− ln(x+ n/2− 1)

]n+2

3
.

Therefore,

E[T ] ≥ 2n2

n− 2

(
ln(n+ 2)− ln 3− ln(n+ 2 + n/2− 1) + ln(n/2 + 2)

)
= 2n lnn+O(n).

The upper bound is similar.
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Solution to Exercise 3
Let g(x) = lnx ln lnx and define

Yt =

{
g(Xt) if Xt ≥ e,
0 otherwise.

Let T be the first point in time where YT = 0. Note that this is also the first point in time where XT

goes below e. Thus it suffices to show that E[T ] = Ω(lnn ln lnn).

(a) Let us compute the drift
∆(a) = E[Yt − Yt+1 | Yt = a].

Fix any a > 0 and let x = g−1(a). We have

∆(a) = a−
bexc∑
i=3

g(i)

1 + bexc
,

by conditioning on the different possible values of Xt+1. We can bound

bexc∑
i=3

g(i) ≥
∫ ex

e

g(z) dz − g(ex)

and
1

1 + bexc
≥ 1

2 + ex
≥ 1

ex
− 2

e2x2
.

Combining everything,

∆(a) ≤ a−
(

1

ex
− 2

e2x2

)(∫ ex

e

g(z) dz − g(ex)

)
= a− 1

ex

∫ ex

e

g(z) dz + o(1), (1)

as x→∞.
The next step is to bound the integral of g(z). Let a(z) = z ln z − z and let b(x) = ln ln z. Observe
that a′(z) = ln z. Integrating by parts,∫ ex

e

g(z) dz =

∫ ex

e

a′(z)b(z) dz =
[
a(z)b(z)

]ex
z=e
−
∫ ex

e

a(z)b′(z) dz.

Since a(z)b′(z) = (z ln z − z)/(z ln z) = 1− 1/ ln z, we can simply upper bound∫ ex

e

a(z)b′(z) dx ≤
∫ ex

e

1 dx ≤ ex.

Therefore, we obtain∫ ex

e

g(z) dz ≥ (ex ln(ex)− ex) ln ln(ex)− ex = ex · g(ex)− ex ln lnx− ex.

Plugging this into (1), we get

∆(a) ≤ a− g(ex) + ln lnx+ 1 + o(1).

Since
g(ex) = (1 + lnx) ln(1 + lnx) = ln lnx+ lnx ln lnx+ o(1),

and a = g(x) = lnx ln lnx, this gives
∆(a) ≤ 1 + o(1).

(b) Let C > 0 be such that ∆(a) < C for all a > 0. The Theorem 1.1 immediately gives

E[T ] ≥ Y0/C = g(n)/C = (lnn ln lnn)/C,

under the assumption that limt→∞ E[Xt] = 0.
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(c) Let C > 0 be such that ∆(a) < C for all a > 0. Then, as in the proof of Theorem 1.1, we have

Pr[T > t] ≥ E[Yt − Yt+1]/C.

Therefore

CE[T ] ≥
∞∑
t=0

C Pr[T > t] ≥
t0∑
t=0

C Pr[T > t] ≥
t0∑
t=0

E[Yt]− E[Yt+1] = E[Y0]− E[Yt0+1].

In particular (taking lim sup on both sides),

CE[T ] ≥ E[Y0]− lim inf
t→∞

E[Yt].

Since Y0 = lnn ln lnn, the claim follows.

(d) Assume that lim inft→∞ E[Yt] > 0. Then there must exist some δ and some positive integer t0 such
that for all t ≥ t0, we have E[Yt] ≥ δ.
We have

Pr[Yt > 0] =
E[Yt]

E[Yt | Yt > 0]
.

Note that, deterministically,

Yt ≤ g(net) = ln(net) ln ln(net) = (t+ lnn) · (ln(t+ lnn).

Therefore, if t0 is sufficiently large, then for all t ≥ t0,

Pr[Yt > 0] ≥ δ

(2t) ln(2t)
.

From this, we obtain

E[T ] =

∞∑
t=0

Pr[T > t] =

∞∑
t=0

Pr[Yt > 0] ≥
∞∑

t=t0

δ

(2t ln(2t)
=∞.
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