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Solution to Exercise 1
Let X be a set of size n and let Ω be the set of all subsets of X of size k, where k is a fixed constant.
We consider the symmetric (lazy) random walk on the graph G with vertex set Ω where AB is an edge
if and only if the size of the symmetric difference between A and B is exactly two. We will use 4 for the
symmetric difference of sets, i.e., A4B = (A \B) ∪ (B \A).

To bound the mixing time tmix, we give a lower bound for the edge expansion

h(G) = min
0<|S|<|Ω|/2

e(S, S)

|S|
.

For this, we use the canonical paths method. Thus, we should start by defining paths between any two
elements A,B ∈ Ω. It turns out that the exact definition of the paths is not really all that important;
the only important thing is that on the path from A to B, we never leave the set A ∪ B. Clearly, there
are many ways of definiting paths that satisfy this condition. Assume now that we fix such a system of
paths.

Consider any edge A′B′ ∈ E(G) and count the number of pairs (A,B) for which the corresponding A-
B-path uses the edge A′B′. We first note that by the defining property of our paths, the union A′ ∪ B′
must be a subset of A ∪B. Since |A′4B′| = 2 and |A′| = |B′| = k, we have

|A′ ∪B′| = k + 1.

On the other hand, clearly |A ∪B| ≤ |A|+ |B| = 2k. Then we can count the pairs AB that use the edge
A′B′ as follows. First, we colour the elements of A′ ∪ B′ red, blue, or green, depending on whether the
element is in A\B, B\A or B∩A. Note that there are 3k+1 such colourings. Fix any such colouring and let
r, b, g be the numbers of red, blue and green elements, respectively. Then the number of choices for A that
are consistent with the colouring of A′∪B′ is at most nk−r−g (one needs to choose the k− r− g elements
that are not in A ∩ (A′ ∪B′)), and, similarly, the number of consistent choices for B is at most nk−b−g.
All in all, for each colouring, the number of coices for (A,B) that are consistent with the colouring is at
most n2k−r−b−2g. However, since r + b + g = |A′ ∪ B′| = k + 1, we have n2k−r−b−2g = nk−1−g ≤ nk−1.
Therefore, there are at most 3k+1nk−1 pairs (A,B) that use the edge A′B′.

From this, we obtan a lower bound on h(G) as usual. If |S| ≤ |Ω|/2 =
(
n
k

)
/2, then

e(S, S) · 3k+1nk−1 ≥ |S||S| ≥ |S| ·
(
n

k

)
/2,

so we have

h(G) ≥
(
n
k

)
2 · 3k+1nk−1

= Ω(n).

Using the result from the lecture, and as G is d-regular with d ≤ n, we obtain

tmix ≤
4d2 log(2

√
|Ω|)

h(G)2
= O(log(

√
|Ω|)) = O(log n).

Solution to Exercise 2
Let X and Y be two configurations. We construct a path from X to Y .

We think of our board as having k rows and n columns. Instead of moving directly from X to Y , we move
first to nearby configurations X ′ and Y ′ with a single king in each row. We build a path in three stages:
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• Stage 1: Using only vertical moves, move from X to a configuration X ′ such that each row contains
a single king.

• Stages 2 to k + 1: Using only horizontal moves, move the king in the first row from its column in
X ′ to its column in Y ′. Then move the second king from its column in X ′ to its column in Y ′.
Continue in this fashion until all of the kings have been moved to their column in Y ′.

• Stage k + 2: Using only vertical moves, move from Y ′ to Y .

We will assume for now that that Stages 1 and k+ 2 can be accomplished, i.e., that it is possible to move
from X to X ′ and from Y ′ to Y using only vertical moves.

Given this, we can bound the maximal flow on an edge as follows. If the edge corresponds to a vertical
move, then the paths only use it in the first or last stage. In the first stage, the number of X’s that use
it is at most kk, since each king must be in the same column in X as it is in the endpoints of the edge,
but it can be in one of k rows. Y can be anything, so the number of paths is at most kk · |Ω|. The last
stage is the same, so the load of the horizontal moves is at most 2kk · |Ω|.

For a horizontal move e, assume that we are moving a king in the i-th row. Then the first i − 1 kings
have already been moved, and the last k − i kings haven’t been moved yet.

Consider a pair (X ′, Y ′) that uses e. How many possibilities are there for X ′? Well, we know the locations
of the last k−i kings, and the first i kings could be anywhere (so long as there is a single one in each row),
so there are ni possibilities. Similarly, there are nk−i+1 possiblities for Y ′, so the number of pairs (X ′, Y ′)
using e is at most nk+1 < n ·

(
nk
k

)
≤ n · |Ω|. Given X ′ and Y ′, there are again at most kk possibilities for

X and the same for Y , so the total number of paths using e is at most nk+1 · k2k.

Therefore, by Theorem 2.7, h(G) ≥ 1/(2k2k · n) ∈ Ω(n−1) since k is a constant. Finally, by the hint from
the exercise

tmix ∈ O(n2 log n).

It remains to prove that Stages 1 and k + 2 are possible. We will focus on Stage 1; Stage k + 2 is the
same. We can prove this by induction on k.

For k = 1 there is nothing to prove. In general, we first move the lowest king down to the bottom row
(unless it is already there). On the other hand, if there are multiple kings on the bottom row, we make a
series of moves to move all but one of them upwards, so that there is only one king on the bottom row.
That is, if there is a “pile” of kings of size r on the bottom r places in some column, we move the top king
in the pile up one square, and then the next one and so on until all of the pile has moved up one square.

Now the bottom row has a single king, and the top k−1 rows have k−1 kings, so we can use the induction
hypothesis.

Solution to Exercise 3

(a) The Markov chain is connected and it has an odd and an even cycle, so it is ergodic.

(b) This works like in the hypercube. Contrary to what is stated in the exercise sheet, we need to assume
that the random walk is lazy. The paths are obtained by going through the coordinates from left to
right and fixing one coordinate at a time. Consider an edge

(x1, . . . , xn) 7→ (x1, . . . , xi−1, yi, xi+1, . . . , xn),

where yi = xi ± 1. This edge is used only by pairs (s, t) ∈ Ω2 such that for all j < i, we have
tj = xj , and for all j > i, we have sj = xj . Therefore, the number of pairs using the edge is at most
ki+1 · kn−i+1 = kn+2. From this, we obtain a lower bound for the Cheeger constant:

h(G) ≥ |Ω|/(2kn+2) = 1/(2k2).

By the result from the lecture (for lazy random walks on d-regular graphs),

tmix ≤
4d2 log(2

√
|Ω|)

h(G)2
= O(n3).
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(c) The eigenvalues of Ck (the cycle on k vertices) are 2 cos(2rπ/k), 0 < r < k. The easiest way to see
this is to write the adjacency matrix A1 of Ck as the sum A1 = A+AT , where

A =


0 1 0 · · · 0 0
0 0 1 · · · 0 0

. . .
0 0 0 · · · 0 1
1 0 0 · · · 0 0

 .

The characteristic polynomial of A is

pA(λ) = det(A− λI) = (−λ)k − (−1)k,

which is zero if and only if λk = 1. Thus, the eigenvalues of A are of the form ωr, where 0 ≤ r < k and
where ω = e2πi/k. Since multiplication with A corresponds to a cyclic left-shift of the input vector, the
eigenvector associated with ωr must be (1, ωr, ω2r, . . . , ωkr). Similarly, for AT , the eigenvalues are also
ωr, with associated eigenvector (1, ω−r, ω−2r, . . . , ω−kr). Therefore, the eigenvectors of A1 = A+AT

are exactly the vectors
(1, ωr, ω2r, . . . , ωkr)

with associated eigenvalues ωr + ω−r = 2 cos(2rπ/k).

Now note that the adjacency matrix of Cnk (the graph on which our random walk takes place) has
the recursive definition

An = Ik ⊗An−1 +A1 ⊗ Ikn−1 ,

where ⊗ denotes the Kronecker product of matrices (note that An has dimensions kn × kn). Let
v be an eigenvector of An−1 with eigenvalue λ and let u be an eigenvector of A1 with eigenvalue
µ. Then u ⊗ v is an eigenvector of An with eigenvalue λ + µ (check this). Moreover, these are all
eigenvalues, since if v1, . . . , vkn−1 is an eigenbasis for An−1 and u1, . . . , uk is an eigenbasis for A1,
then the products ui ⊗ vj are linearly independent: assuming∑

λij(ui ⊗ vj) = 0,

we have in particular
∑
λijuikvj = 0 for all k, which, by independence of the vj implies

∑
λijuik = 0

for all k. But then
∑
λijui = 0, which by independence of the ui, implies

∑
λij = 0.

By induction, we thus see that the eigenvalues of An are all sums of the form

2 cos(2r1π/k) + 2 cos(2r2π/k) + · · ·+ 2 cos(2rnπ/k),

where 0 < ri < k.

The largest eigenvalue is 2n, the second largest is 2(n−1)+2 cos(2π/k), and the smallest is 2n cos(2(k−
1)π/k). One sees that of the latter two, the one with largest absolute value is the first, provided n is
large enough, i.e.,

2n−max {|λ2|, |λkn |} = 2− 2 cos(2π/k).

Every vertex has degree 2n, so using the result from the lecture, it follows that

tmix(1/4) ≤
2n log(

√
2|Ω|)

2− 2 cos(2π/k)
=

2 log(
√

2)n+ n2 log k

2− 2 cos(2π/k)
.
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