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Solution to Exercise 1
Let G = (V,E) be a d-regular expander graph of order n with spectral expansion λ. Assume that
f : G → R is Lipschitz continuous, i.e., that there exists a constant M ≥ 0 such that for all vertices
u, v ∈ V , we have

|f(u)− f(v)| ≤M · d(u, v),
where d(u, v) denotes the distance between the vertices u and v on G. Let K be a median for the values
f(v), i.e., let K be such that

|v ∈ V : f(v) ≥ K| ≥ n/2 and |v ∈ V : f(v) ≤ K| ≥ n/2.

Then we claim that there exist constants c, C > 0 such that for all m ≥ 0, we have

|v ∈ V : |f(v)−K| ≥ m| ≤ Cne−cm. (1)

Before proving this, note that this general statement immediately implies the statement in the exercise.
Indeed, the eccentricity function is Lipschitz with Lipschitz constant 1, and since all eccentricities are
positive integers, the median K can be chosen to be a positive integer as well.

When proving the claim, we can assume that M > 0, as otherwise the claim is trivially true (say, with
C = 1). Additionally, we will for now only consider the case m > 0. Thus, fix some m > 0 and let A0

be the set of all vertices v such that f(v) ≤ K −m. Moreover, for every i ∈ N, let Ai be the set of all
vertices that have distance at most i to A0.

By the Lipschitz condition, we immediately see that for all v ∈ Ai, we have f(v) ≤ K −m+Mi. Let k
be the largest integer strictly smaller than m/M ; since we assume that m,M > 0, we have k ≥ 0. Since
at least n/2 vertices satisfy f(v) ≥ K, we have |Ai| ≤ |Ak| ≤ n/2 for all 0 ≤ i ≤ k. Thus, by Cheeger’s
inequality, for all 0 ≤ i ≤ k, we have

|Ai+1| ≥ |Ai|+ d−1|E(Ai, V \Ai)| ≥ |Ai|+ (d− λ) · |Ai|/(2d) =
(
1 +

d− λ
2d

)
|Ai|.

By induction, we obtain

|Ak| ≥
(
1 +

d− λ
2d

)k

|A0|. (2)

However, since |Ak| ≤ n/2, we must have

|A0| ≤
n

2

(
1 +

d− λ
2d

)−k
. (3)

Since k ≥ m/M − 1, we have in particular

|v ∈ V : f(v) ≤ K −m| ≤ n

2

(
1 +

d− λ
2d

)1−m
M

. (4)

The argument above also applies to the function g(v) = −f(v), which is Lipschitz with the same Lipschitz
constant M , and which has −K as a median value. Therefore

|v ∈ V : f(v) ≥ K +m| = |v ∈ V : g(v) ≤ −K −m| ≤ n

2

(
1 +

d− λ
2d

)1−m
M

.
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All in all, we have proved that for all m > 0, we have

|v ∈ V : |f(v)−K| ≥ m| ≤ n
(
1 +

d− λ
2d

)1−m
M

,

and this is clearly also true for m = 0.

Solution to Exercise 2

(1) First, a note about the definition of p`(Td): stricly speaking, there is no uniform distribution on
V (Td) (as this is a countably infinite set), which makes the definition given in the exercise appear
meaningless. However, it is clear that in Td, the probability that a random walk of length 2` is closed
does not depend on the choice of the starting vertex, so the definition still makes sense.

We start by showing that p`(G) ≥ p`(Td). This is easiest to see by a coupling argument. Observe that,
by considering repeated vertices as different vertices except when moving backwards, every walk on G
gives rise to a walk of the same length on Td. Moreover, a uniformly random walk on G gives rise to a
uniformly random walk on Td in this way. If the random walk on Td is closed, then the random walk
on G is also closed, but not necessarily vice-versa. This implies that the probability that a random
walk of length 2` in G is closed is at least the probability that a random walk of length 2` on Td is
closed.

Next, we will prove that p`(Td) ≥ C`(d− 1)`/d2`. Fix any starting vertex x1 in Td. Clearly, there are
d2` different walks of length 2` that start in x1. It is also easy to see that the number of closed walks
of length 2` starting in x1 is at least C`(d− 1)`. To see this, we can interpret an opening parenthesis
as moving away from x1 and a closing paranthesis as moving towards the starting point. Since there
are at least d − 1 ways to move away from x1 (there are exactly d − 1 except if we are at the root,
where there are d ways), we see that each properly parenthesized string in {(, )}2` corresponds to at
least (d− 1)` distinct closed random walks starting in x1, and thus the total number of such walks is
indeed at least C`(d− 1)`. This shows that p`(Td) ≥ C`(d− 1)`/d2`.

(2) Let P be the transition matrix of the random walk on G. Then p`(G) is the average of the diagonal
elements of P 2`, i.e., p`(G) = tr(P 2`)/n. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of P . Because
the trace of a matrix is the sum of its eigenvalues, we have

n · p`(G) = tr(P 2`) =
∑
i

λ2`i = 1 +
∑
i≥2

λ2`i ≤ 1 + (n− 1) · (λ/d)2`.

Note that we have to divide by d because λ is computed from the eigenvalues of the adjacency matrix
of G, which differ from the eigenvalues of P by a factor of d.

(3) Combining (1) and (2), we have

n · C`(d− 1)`/d2` ≤ 1 + (n− 1) · (λ/d)2`,

which gives

λ ≥
(
n · C`(d− 1)` − d2`

n− 1

)1/2`

.

Suppose first that ` is a positive constant. Then as n→∞, we get

λ ≥
(
C`(d− 1)` − o(1)

)1/2`
= C

1/2`
` (d− 1)1/2 − o(1).

Next, we show that lim`→∞ C
1/2`
` = 2; note that by letting ` tend to infinity sufficiently slowly, this

will give the desired lower bound on λ. We are given the expression

C` =

(
2`

`

)
· (`+ 1)−1.
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Using Stirling’s approximation, as `→∞, we have(
2`

`

)
=

(2`)!

`!2
∼ 22`/

√
π`,

so

lim
`→∞

C
1/2`
` = 2 · lim

`→∞

(
1√

π`(`+ 1)

)1/2`

= 2,

using that `−3/4` → 1.

Solution to Exercise 3

Recall that v ∈ Rn is defined by

vi =

{
|S| if i ∈ S
−|S| otherwise.

Then
vTAv =

∑
ij

aijvivj = −2|E(S, S)| · |S||S|+ 2|E(S)| · |S|2 + 2|E(S)| · |S|2.

However, since G is d-regular, we have

2|E(S)| = d|S| − |E(S, S)| and 2|E(S)| = d|S| − |E(S, S)|,

so by plugging this into the equation above, we get

vTAv = −2|E(S, S)| · |S||S|+ d|S|2|S| − |S|2|E(S, S)|+ d|S|2|S| − |S|2|E(S, S)|.

Therefore
vTAv

n · |S||S|
=
d|S|+ d|S|

n
− |E(S, S)| · 2|S||S|+ |S|

2 + |S|2

n · |S||S|
.

Since |S|+ |S| = n, this simplifies to

vTAv

n · |S||S|
= d− n|E(S, S)|

|S||S|
= d− φ(S).

Observe that v is orthogonal to the eigenvector (1, 1, . . . , 1) with eigenvalue d (the inner product is
|S||S| − |S||S| = 0). By the Courant-Fischer inequality, we then have

λ2 ≥
vTAv

vT v
=

vTAv

|S|2|S|+ |S|2|S|
=

vTAv

n · |S||S|
= d− φ(S).

Rearranging, we have φ(S) ≥ d− λ2, as required.
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