Advanced Data Structures

Spring Semester 2017

Exercise Set 1

Exercise 1:

Show that a family of hash functions $h(x) = (ax) \mod m$, where $0 \le a < m$, is not universal.

Exercise 2:

Assume that $u = 2^k$ and $m = 2^l$. Show that a family of hash functions $h(x) = \lfloor ((ax) \mod 2^k)/2^{k-l} \rfloor$, for odd $0 < a < 2^k$ is universal.

Hint:

(i) $A = \{a | 0 < a < 2^k \text{ and } a \text{ is odd} \}$ forms multiplicative group modulo 2^k .

(ii) Consider x and y such that h(x) = h(y). What is the set I of all the possible values of $a \cdot (x - y) \mod 2^k$ (for any such x and y)?

(iii) Show that number of such a's that $a \cdot (x - y) \mod 2^k \in I$ is equal to the number of such a's that $a \cdot 2^s \mod 2^k \in I$, where 2^s is the largest power-of-two divisor of x - y.

Exercise 3:

Let $h(x) = [(\sum_{i=0}^{k-1} a_i x^i) \mod p] \mod m$, where $0 \le a_i < p$, $0 < a_{k-1} < p$ and p is a prime number which is greater than u. Show that h(x) is k-wise independent. *Hint*:

Polynomial of degree k - 1 in Z_p is uniquely defined by its value on k distinct points.