Advanced Data Structures

Spring Semester 2017

Exercise Set 1

Exercise 1:

Show that a family of hash functions $h(x)=(a x) \bmod m$, where $0 \leq a<m$, is not universal.

Exercise 2:

Assume that $u=2^{k}$ and $m=2^{l}$. Show that a family of hash functions $h(x)=\left\lfloor\left((a x) \bmod 2^{k}\right) / 2^{k-l}\right\rfloor$, for odd $0<a<2^{k}$ is universal.
Hint:
(i) $A=\left\{a \mid 0<a<2^{k}\right.$ and a is odd $\}$ forms multiplicative group modulo 2^{k}.
(ii) Consider x and y such that $h(x)=h(y)$. What is the set I of all the possible values of $a \cdot(x-y) \bmod 2^{k}($ for any such x and $y)$?
(iii) Show that number of such a 's that $a \cdot(x-y) \bmod 2^{k} \in I$ is equal to the number of such a's that $a \cdot 2^{s} \bmod 2^{k} \in I$, where 2^{s} is the largest power-of-two divisor of $x-y$.

Exercise 3:

Let $h(x)=\left[\left(\sum_{i=0}^{k-1} a_{i} x^{i}\right) \bmod p\right] \bmod m$, where $0 \leq a_{i}<p, 0<a_{k-1}<p$ and p is a prime number which is greater than u. Show that $h(x)$ is k -wise independent.
Hint:
Polynomial of degree $k-1$ in Z_{p} is uniquely defined by its value on k distinct points.

