Advanced Data Structures

Spring Semester 2017

Exercise Set 2

Exercise 1:

Let $u = 2^{c\ell}$. For every key $0 \le x < u$, and $c \ge 2$. Let $h(x) = T_1(x_1) \oplus T_2(x_2) \dots \oplus T_c(x_c)$, where x_1, \dots, x_c are digits of x in 2^{ℓ} basis, and each T_i is totally random hash function $2^{\ell} \to 2^{\ell'}$, for some $\ell' \le \ell$.

Show that family of h(x) is 3-wise independent, but not 4-wise independent.

Hint:

4-wise independence: it is enough to point a single quadruple of distinct keys A, B, C, D for which h(A), h(B), h(C), h(D) are correlated.

3-wise independence:

Consider any triplet of keys A, B, C. Show that there is coordinate *i*, such that if we fix in place all hash functions except T_i , iterating over all possible values of T_i gives us identical probability for all possible values of (h(A), h(B), h(C)).

Useful fact: for any fixed $0 \le y < 2^{\ell}, x \to x \oplus y$ is bijective function.

Exercise 2:

Show that the longest chain has length $\mathcal{O}(\frac{\lg n}{\lg \lg n})$ w.h.p.

Hint:

Use Chernoff bound (where μ denotes E[X]):

$$\Pr(X > c\mu) < \left(\frac{e^{(c-1)}}{c^c}\right)^{\mu}.$$

Exercise 3:

Consider a Cuckoo hashing. Show that if f and g used in hashing are totally random functons, and $m \ge 2n$, then

 $\Pr(\text{Insert follows bump path of length } k) \le 1/2^k).$