# Advanced Data Structures 

## Spring Semester 2017

Exercise Set 2

## Exercise 1:

Let $u=2^{c \ell}$. For every key $0 \leq x<u$, and $c \geq 2$. Let $h(x)=T_{1}\left(x_{1}\right) \oplus T_{2}\left(x_{2}\right) \ldots \oplus T_{c}\left(x_{c}\right)$, where $x_{1}, \ldots, x_{c}$ are digits of $x$ in $2^{\ell}$ basis, and each $T_{i}$ is totally random hash function $2^{\ell} \rightarrow 2^{\ell^{\prime}}$, for some $\ell^{\prime} \leq \ell$.
Show that family of $h(x)$ is 3 -wise independent, but not 4 -wise independent.

## Hint:

4 -wise independence: it is enough to point a single quadruple of distinct keys $A, B, C, D$ for which $h(A), h(B), h(C), h(D)$ are correlated.

3 -wise independence:
Consider any triplet of keys $A, B, C$. Show that there is coordinate $i$, such that if we fix in place all hash functions except $T_{i}$, iterating over all possible values of $T_{i}$ gives us identical probability for all possible values of $(h(A), h(B), h(C))$.
Useful fact: for any fixed $0 \leq y<2^{\ell}, x \rightarrow x \oplus y$ is bijective function.

## Exercise 2:

Show that the longest chain has length $\mathcal{O}\left(\frac{\lg n}{\lg \lg n}\right)$ w.h.p.

## Hint:

Use Chernoff bound (where $\mu$ denotes $E[X]$ ):

$$
\operatorname{Pr}(X>c \mu)<\left(\frac{e^{(c-1)}}{c^{c}}\right)^{\mu} .
$$

## Exercise 3:

Consider a Cuckoo hashing. Show that if $f$ and $g$ used in hashing are totally random functons, and $m \geq 2 n$, then

$$
\left.\operatorname{Pr}(\text { Insert follows bump path of length } k) \leq 1 / 2^{k}\right)
$$

