
Przemys law Uznański
Giorgi Nadiradze March 07, 2017

Advanced Data Structures

Spring Semester 2017

Exercise Set 3

Exercise 1:
Indirection
Recall a problem of longest common subsequence or equivalent problem of edit distance of
two input strings u, v of length n. Classical DP solution works in time O(n2). Show that it
can be done in time O(n2/ logc n) for some (small) constant c > 0.

Hint :
DP solution works by filling 2d array with integers. This can be speed-up by cutting the
table into square tiles of polylog size. Tile takes its top and left borders, and we only care
about its bottom and right borders. However, we need parametrization such that number of
tiles of size x grows only as a function of x, and is independent from |Σ| or n.

Below, if stated otherwise, we consider arbitrary associative operation ◦, and product queries
of form xi ◦ xi+1 ◦ . . . ◦ xj.

Exercise 2:
Show the “trivial” solution from lecture to the product queries in arrays problem: given array
on n elements, precompute it in O(n) time and space to answer product queries in O(log n)
time.

Exercise 3:
Show a solution to Exercise 2 that works in a dynamic setting (supports assingments to any
xi in time O(log n)).

Exercise 4:
Consider (static) product queries on trees: every node holds value, we query for product of all
values on a path between two given vertices. Show that we can preprocess tree in O(n log n)
time and space, to support queries for path product in O(log n) time.

Hint :
There are two equivalent approaches here:
(i) every node stores some auxilary values regarding jumps towards the root of certain length
(ii) every node stores range tree from Exercise 2, for all values between itself and root. Range
tree of node differs from range tree of its parent on only few values, so it is enough to use
persistence...

Exercise 5:
Show that solution to Exercise 4 can be tweaked to have min queries on trees in O(1) time.

Hint :
Use idempotency of min, that is min(x, x) = x.

Exercise 6:
Consider static data structure for product queries in arrays, where each query is answered
accessing at most ` cells with preprocessed data. Show, that input can be preprocessed in
time: O(n2), O(n log n), O(n log log n) and O(n log∗ n) for ` = 1, 2, 3 and 4 respectively.

Hint :
For ` = 2, you only need to “massage” previous solutions to have 2 memory cells accessed,
instead of O(1). For ` > 2, it is enough to consider partitioning the array of length n into
segments of particular size. In each segment store all prefix and suffix products. Each query
either falls fully into a single segment, or using one stored prefix and one sufix can be aligned
with segments (and the solved with solution for `− 2). Fill in the details, guess proper value
of x for ` = 3, 4 and solve the recursion.

