Advanced Data Structures

Spring Semester 2017 Exercise Set 4

Exercise 1:

Given integer k, text T[1 ... n] and pattern P[1 ... m], we say that it matches with k-mismatches at position i, if T[i ... i+m-1] and P differ in at most k positions. Describe $\mathcal{O}(nk)$ algorithm for finding all k-mismatches alignents.

Hint: You can actually do it in $\mathcal{O}(k)$ time per alignent.

Exercise 2:

A palindrome is a word that is identical to its reverse: $v = v^R$. Describe $\mathcal{O}(n)$ algorithm for finding longest palindromic subword.

Hint: You can actually find in $\mathcal{O}(1)$ time the longest subword centered at given position.

Exercise 3:

Describe efficient algorithm for finding longest substring which appears at least k times in a given text.

Exercise 4:

A rotation of word $T[1 \dots n]$ is a word of form $T[i + 1 \dots n]T[1 \dots i]$, for some *i*. Describe algorithm for finding *lexicographically smallest rotation*.

Question: Can you give two algorithms, either using suffix arrays or suffix trees?

Exercise 5:

Describe algorithm for computing number of different substrings of a given word.

Exercise 6:

Given text T and its suffix array SA, describe how to recover its LCP array in $\mathcal{O}(n)$ operations, without recomputing SA and LCP from scratch using algorithm from lecture.

Hint: Kasai et al. "Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its Applications" has short and clever solution.

Exercise 7:

(*)

(*)

Given a string S, find all of its periodic prefixes. A string T is periodic if it is of the form $w^k w[1 \dots i]$ for some integer k > 0, integer i and word w.

Hint: Try to match string S with one of its suffixes.