Advanced Data Structures

Spring Semester 2017

Exercise Set 4

Exercise 1:

Given integer k, text $T[1 . . n]$ and pattern $P[1 . . m]$, we say that it matches with k-mismatches at position i, if $T[i . . i+m-1]$ and P differ in at most k positions. Describe $\mathcal{O}(n k)$ algorithm for finding all k-mismatches aligments.
Hint: You can actually do it in $\mathcal{O}(k)$ time per aligment.

Exercise 2:

A palindrome is a word that is identical to its reverse: $v=v^{R}$. Describe $\mathcal{O}(n)$ algorithm for finding longest palindromic subword.
Hint: You can actually find in $\mathcal{O}(1)$ time the longest subword centered at given position.

Exercise 3:

Describe efficient algorithm for finding longest substring which appears at least k times in a given text.

Exercise 4:

A rotation of word $T[1 . . n]$ is a word of form $T[i+1 . . n] T[1 . . i]$, for some i. Describe algorithm for finding lexicographically smallest rotation.
Question: Can you give two algorithms, either using suffix arrays or suffix trees?

Exercise 5:

Describe algorithm for computing number of different substrings of a given word.

Exercise 6:

Given text T and its suffix array $S A$, describe how to recover its $L C P$ array in $\mathcal{O}(n)$ operations, without recomputing $S A$ and $L C P$ from scratch using algorithm from lecture.
Hint: Kasai et al. "Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its Applications" has short and clever solution.

Exercise 7:

Given a string S, find all of its periodic prefixes. A string T is periodic if it is of the form $w^{k} w[1 . . i]$ for some integer $k>0$, integer i and word w.
Hint: Try to match string S with one of its suffixes.

