Advanced Data Structures

Spring Semester 2017 Exercise Set 9

Recall from the lecture:

Definition. Given U and m, a family of sets $S \subseteq 2^U$ is a separator family, if for any disjoint $A, B \subseteq U$ such that $|A|, |B| \leq m$, there is $C \in S$ such that $A \subseteq C$ and $B \subseteq U \setminus C$.

Exercise 1:

Prove that there exist separator family \mathcal{S} such that $|S| \leq 2^{\mathcal{O}(m + \log \log |U|)}$.

Hint: Use probabilistic method. There are at least two proof strategies:

- Pick $C \in 2^U$ at random. What is the probability that it separates any given pair A, B?
- Pick at random hash function $h: U \to [4m]$. What is the probability, that for any given set M of size 2m, h is injective on M?¹ If you fix, $M = A \cup B$, then h separates A from B.

Exercise 2:

Finish the proof from the lecture (that is, in the *worst case* connectivity takes $\Omega(\log n)$ steps per operation). Recall: T is the number of leaves under given node, R, W are the memory cells, either read in the right subtree or written in the left subtree, respectively. By applying Exercise 1 to the simulation argument, we get (how?):

$$|R \cap W| \cdot \mathcal{O}(\log n) + \mathcal{O}(|R| + |W| + \log \log n) = \Omega(T\sqrt{n}\log n)$$

Show that it suffices (consider two cases, either |R| + |W| is small or large).

Exercise 3:

Show $\Omega(\log n)$ lower bound for the dynamic testing of connectivity of the whole graph.

Hint: Consider G_1 , graph from connectivity lower bound. Let $G_2 = G_1$ plus extra vertex s, where s will be connected to all vertices from first column. Updates remain the same. Show how to perform connectivity queries in G_1 by testing connectectivity of the whole G_2 (you can afford to add and remove constant number of edges before and after each query).

Exercise 4:

Show $\Omega(\log n)$ lower bound for *dynamic minimal spanning forest* problem.

Hint: It holds even if every edge has weight 1.

¹see: *perfect hash family*