Advanced Data Structures

Spring Semester 2017
Exercise Set 11
Below, o denotes concatenation.

Exercise 1:

Let our input word be $x=0^{t} \circ \varepsilon_{1} \circ 0^{t} \circ \varepsilon_{2} \circ \ldots \circ 0^{t} \circ \varepsilon_{k}$, where $\varepsilon_{i} \in\{0,1\}$ (assume $t \gg \log w$). Show that there is constant m, such that we can extract bitcount (x) from $(x \cdot m)$ using $\mathcal{O}(1)$ bit operations.

Exercise 2:

Parallel search in $\mathcal{O}(1)$ bit operations. That is, show that given $s_{1}<s_{2}<\ldots<s_{k}$ of the same length, we can pack them into single word (assume you have enough space), that given q of the same length as s_{i}, we can find using constant number of operations, i such that $s_{i} \leq q<s_{i+1}$.

Hint: Assume you have some extra space (this is not a problem) and pack into single word $a_{1}=1 \circ s_{1} \circ 1 \circ s_{2} \circ \ldots \circ 1 \circ s_{k}$ and consider $a_{2}=0 \circ q \circ 0 \circ q \circ \ldots \circ 0 \circ q$. Use Exercise 1 on $a_{1}-a_{2}$.

Exercise 3:

Most significant ' 1 ' on short inputs: given x such that $|x|=\sqrt{w}$, show that we can find position of the most significant ' 1 ' in x.
$\boldsymbol{H i n t}$: Use parallel search of x among \sqrt{w} words of length \sqrt{w}.

Exercise 4:

Most significant ' 1 ' on inputs as in Exercise 1: $x=0^{k} \circ \varepsilon_{1} \circ 0^{k} \circ \varepsilon_{2} \circ \ldots \circ 0^{k} \circ \varepsilon_{k}$ where $k=\sqrt{w}$.
Hint: There is explicitly given constant m, such that $(x \cdot m)$ contains a single block of bits: $\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{k}$.

Exercise 5:

Most significant ' 1 ' on any input.
Hint: Cut your input into \sqrt{w} blocks of length \sqrt{w} (mentally, we cannot aford it). With little work, we can find first non-empty block (and reduce that part to Exercise 4). Inside first non-empty block, use Exercise 3.

