Advanced Data Structures

Spring Semester 2017

Exercise Set 13

We aim at designing succint datastructure for storing *trits* (3-state version of bits). In particular, we want to store $X \in \{0, 1, 2\}^n$ using $\log_2 3 \cdot n$ bits + small overhead, having fast access to any X[i].

Exercise 1:

Show that $\Theta(w)$ trits can be stored with $\mathcal{O}(1)$ overhead, providing $\mathcal{O}(1)$ time access.

Hint: Interpret $X \in \{0, 1, 2\}^n$ as $X \in [0 ... 3^n - 1]$.

Exercise 2:

Show that n trits can be stored using $\lceil \log_2 3 \cdot n \rceil + \mathcal{O}\left(\frac{n}{w}\right)$ bits, providing $\mathcal{O}(1)$ time access.

Exercise 3:

Show that n trits can be stored using $\lceil \log_2 3 \cdot n \rceil + \mathcal{O}\left(\frac{n}{wt}\right)$ bits, providing $\mathcal{O}(t)$ time access, for any $1 \le t < n/w$.

All previous exercises are based around idea that any coding from universe X uses $\lceil \log_2 |X| \rceil$ bits, which wastes $\mathcal{O}(1)$ bits (unless |X| is power of two).

Definition. For any universe X, and appriopriately chosen integeres K, M, an injection $X \to 2^{[M]} \times [K]$ is called spill-over representation of X. For any $x \in X$, the value of $k \in [K]$ from its representation is called its spill.

Exercise 4:

Show, that for any X and r < |X|, there is a spill-over representation of X with $r \le K \le 2r$ such that $|X| \le K \cdot 2^M \le (1 + \frac{1}{r})|X|$. Moreover, show that encoding/decoding can be done with few arithmetic operations.

Spill-over representation wastes only $\log_2(1+1/r) = 1/\mathcal{O}(r)$ bits.

Exercise 5:

Show that *n* trits can be stored using $\lceil \log_2 3 \cdot n \rceil + \mathcal{O}\left(\frac{n}{w^2/\log w}\right) + \operatorname{polylog}(n)$ bits, providing $\mathcal{O}(1)$ time access.

Hint: Take r to be constant to be fixed later. Use two-level scheme:

- On the first level, store $\Theta(w)$ trits in spill-over representation, for some $K \in [r \dots 2r]$. Keep bits on this level.
- On the second level, store spills, grouped in the same way as trits in Exercises 1-3.

Count the number of bits wasted in each place.

Exercise 6:

Generalize previous Exercise into: $\lceil \log_2 3 \cdot n \rceil + \mathcal{O}\left(\frac{n}{w^t}\right) + \operatorname{polylog}(n)$ bits for n trits, with $\mathcal{O}(t)$ time access (for constant t).

Exercise 7:

Show that data structures from all previous exercises support writes in the same time as reads.