
Dan Alistarh May 22nd, 2017
Giorgi Nadiradze Deadline: May 22nd, 2017

Advanced Data Structures

Spring Semester 2017

Exercise Set 14

Exercise 1:
Recall Peterson’s two-thread mutual exclusion algorithm from class. We will now prove some
more of its properties.
Question 1: Does the algorithm still guarantee mutual exclusion if we swap the order of
the variable check in the while loop? More precisely, for Alice, we will have

while(turn == his&he wants == true),

and the symmetric for Bob.

Question 2: Prove that the algorithm satisfies deadlock-freedom: for any sufficiently long
suffix, there is some lock or unlock operation which succeeds. (Crucially, you will need to use
the fact that every thread is scheduled to take steps eventually.)

Question 3: Consider the following livelock-freedom property: for any sufficiently long
suffix, every lock or unlock operation succeeds. Does the algorithm guarantee this property?

Exercise 2:
Peterson’s algorithm is designed to work with only two threads.
Question: Can you build on this algorithm to solve mutex for an arbitrary (known) number
of threads n? Write down the pseudocode in detail.

Exercise 3:
The implementation of Treiber’s lock-free stack algorithm we presented in class today implic-
itly assumed that nodes are immutable, in the sense that once a node is popped, its memory
should never be reused for some other node.
Question 1: Can you build an example where if a node’s memory can be reused we break
the correctness of the stack? More precisely, you need to construct an execution in which
some thread would return an incorrect value. (Hint: your execution should build a scenario
where a CAS that should fail doesn’t.)

Question 2: Can you fix the stack implementation so that this issue doesn’t occur?

Exercise 4:
A shared queue object implements enqueue and dequeue operations, with the same semantics
as their sequential counterparts.
Question: Build a non-blocking shared queue using read, write and compare-and-swap
operations.

Exercise 5:
A binary consensus shared object has a single operation propose that takes a value v equal to
0 or 1 as an argument and returns 0 or 1. When a thread pi invokes propose(v), we say that
pi proposes value v. When pi is returned value v′ from propose(v), we say that pi decides
value v′ (v′ does not have to be equal to v). A binary consensus object satisfies the following
properties:

Agreement No two threads decide different values.

Validity The value decided is one of the values proposed.

Termination Every thread that does not crash will eventually decide.

A fetch-and-increment register is a shared object with the following sequential specification:

Shared: register R, initially 0

upon fetch-and-inc()

x = R

R = R + 1

return x

Your tasks are:

1. Implement a binary consensus object using atomic read/write and fetch-and-increment
operations in a system of 2 threads;

2. Implement a binary consensus object using read/write and one or more shared queue
objects (with the usual FIFO semantics) in a system of 2 processes. The queues can
be initialized with whatever you want;

3. (?) Implement a binary consensus object for 2 processes using registers and one or more
queue objects that are initially empty.

4. Implement a binary consensus object using atomic read/write and compare-and-swap
operations in a system of n threads;

5. (?, optional) Prove that one cannot implement binary consensus for 2 threads in a
system where only read and write operations are available, and threads may stop taking
steps (crash) at any point during the execution.

