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ABSTRACT
In this paper, we present lower bounds for permuting and
sorting in the cache-oblivious model. We prove that (1) I/O
optimal cache-oblivious comparison based sorting is not pos-
sible without a tall cache assumption, and (2) there does not
exist an I/O optimal cache-oblivious algorithm for permut-
ing, not even in the presence of a tall cache assumption.

Our results for sorting show the existence of an inherent
trade-off in the cache-oblivious model between the strength
of the tall cache assumption and the overhead for the case
M � B, and show that Funnelsort and recursive binary
mergesort are optimal algorithms in the sense that they at-
tain this trade-off.
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F.1.1 [Theory of Computation]: Models of Computa-
tion—Relations between models
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1. INTRODUCTION
Modern computers contain a hierarchy of memory lev-

els, with each level acting as a cache for the next. Typical
components of the memory hierarchy are: registers, level 1
cache, level 2 cache, level 3 cache, main memory, and disk.
The time for accessing a level increases for each new level
(most dramatically when going from main memory to disk),
making the cost of a memory access depend highly on what
is the current lowest memory level containing the element
accessed.

As a consequence, the memory access pattern of an algo-
rithm has a major influence on its running time in practice.
Since classic asymptotic analysis of algorithms in the RAM
model (depicted in Figure 1) is unable to capture this, a
number of more elaborate models for analysis have been
proposed. The most widely used of these is the I/O model
introduced by of Aggarwal and Vitter [2] in 1988, which as-
sumes a memory hierarchy containing two levels, the lower
level having size M and the transfer between the two lev-
els taking place in blocks of B consecutive elements. This
model is illustrated in Figure 2.

The cost of the computation in the I/O model is the num-
ber of blocks transferred between the two memory levels.
The strength of the model is that it captures part of the
memory hierarchy (in particular, it adequately models the
situation where the memory transfer between two levels of
the memory hierarchy dominates the running time), while
being sufficiently simple to make analysis of algorithms fea-
sible. By now, a large number of results for the I/O model
exists—see the surveys by Arge [3] and Vitter [24].

Among the fundamental facts are that in the I/O model,
comparison based sorting takes Θ(SortM,B(N)) I/Os in the
worst case, where SortM,B(N) = N

B
logM/B

N
B

, and permut-
ing takes Θ(PermM,B(N)) I/Os in the worst case, where
PermM,B(N) = min{N , SortM,B(N)} [2].

More elaborate models for multi-level memory hierarchies
have been proposed ([24, Section 2.3] gives an overview), but
fewer analyses of algorithms have been done. For these mod-
els, as for the I/O model of Aggarwal and Vitter, algorithms
are assumed to know the characteristics of the memory hi-
erarchy.

Recently, the concept of cache-oblivious algorithms has
been introduced by Frigo et al. [18]. In essence, this desig-
nates algorithms formulated in the RAM model, but ana-
lyzed in the I/O model for arbitrary block size B and mem-
ory size M . I/Os are assumed to be performed automati-
cally by an offline optimal cache replacement strategy. This
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Figure 2: The I/O model

seemingly simple change has significant consequences: since
the analysis holds for any block and memory size, it holds
for all levels of a multi-level memory hierarchy (see [18]).
In other words, by optimizing an algorithm to one unknown
level of the memory hierarchy, it is optimized to each level
automatically. Thus, the cache-oblivious model in a elegant
way combines the simplicity of the I/O-model with a cover-
age of the entire memory hierarchy. An additional benefit
is that the characteristics of the memory hierarchy do not
need to be known, and do not need to be hardwired into
the algorithm for the analysis to hold, which increases the
portability of implementations of the algorithm.

Frigo et al. introduced the concept of cache-oblivious algo-
rithms in 1999, and presented optimal cache-oblivious algo-
rithms for matrix transposition, FFT, and sorting [18], and
also gave a proposal for static search trees [21] with search
cost matching that of standard (cache-aware) B-trees [7].
Since then, quite a number of results for the model have ap-
peared, including the following: Bender et al. [11] gave a pro-
posal for cache-oblivious dynamic search trees with search
cost matching B-trees. Simpler cache-oblivious search trees
with complexities matching that of [11] were presented in [12,
16, 22], and a variant with worst case bounds for updates
appear in [9]. Cache-oblivious algorithms have been given
for problems in computational geometry [1, 9, 14], for scan-
ning dynamic sets [8], for layout of static trees [10], and for
partial persistence [9]. Cache-oblivious priority queues have
been developed in [4, 15], which in turn gives rise to several
cache-oblivious graph algorithms [4]. Some of these results,
in particular those involving sorting and algorithms to which
sorting reduces, such as priority queues, are proved under
the assumption M ≥ B2, which is also known as the tall
cache assumption. In particular, this applies to the Funnel-
sort algorithm of Frigo et al. [18]. A variant termed Lazy
Funnelsort [14] works under the weaker tall cache assump-
tion M ≥ B1+ε for any fixed ε > 0, at the cost of a 1/ε factor

compared to the optimal sorting bound Θ(SortM,B(N)) for
the case M � B1+ε.

In [18], Frigo et al. raised the question of the complex-
ity theoretic relationship between cache-oblivious algorithms
and cache-aware algorithms. Clearly, cache-aware algorithms
can only use caches better than cache-oblivious algorithms,
since they have more knowledge about the system on which
they are running. Frigo et al. asked whether there is a sep-
aration between the two classes, i.e. a problem for which
the asymptotical I/O complexity for all cache-oblivious al-
gorithms is worse than for the best cache-aware.

In this paper, we prove such a separation for the two fun-
damental problems of comparison based sorting and permut-
ing. Specifically, we prove (1) I/O optimal cache-oblivious
comparison based sorting is not possible without a tall cache
assumption, and (2) there does not exist an I/O optimal
cache-oblivious algorithm for permuting, not even in the
presence of a tall cache assumption.

At a more detailed level (see Section 3), our results for
sorting show the existence of an inherent trade-off in the
cache-oblivious model between the strength of the tall cache
assumption and the overhead for the case M � B, and
show that Lazy Funnelsort and recursive binary mergesort
are optimal algorithms in the sense that they attain this
trade-off.

Only little previous work has been done on the question.
Bilardi and Peserico [13] have investigated the portability of
algorithms in the HRAM-model, where the access to mem-
ory location A[i] takes time f(i) for some non-decreasing
function f . Their model of computation is the CDAG, which
is a directed acyclic graph describing the dependencies of the
individual operations of a straight-line program. They give a
specific CDAG and two different HRAM machines for which
they prove that any fixed scheduling of the operations of the
CDAG will be sub-optimal by a factor polynomial on N on
at least one of the machines.

A basic element of our approach is the transformation of
comparison trees, which was inspired by the work of Arge et
al. [5] for the I/O model. Key new features of our proofs are
our definition of a working set, bounds on online searches,
and a formal model for comparison based cache-oblivious
sorting.

This paper is organized as follows: In Section 2, we make
precise our model of cache-obliviousness. In Section 3, we
state our main theorems and prove implications of them. In
Section 4, we give the proofs of our main theorems.

2. DEFINITIONS
We define a cache-oblivous algorithm to be simply an al-

gorithm formulated in the classic RAM model, consisting
of an CPU with some specified set of basic operations, and
a single level of memory viewed as an array A of cells, as
shown in Figure 1.

We will study comparison based sorting in this model. In-
formally, this corresponds to restricting the set of operations
of the CPU w.r.t. elements to copying elements between
memory locations, and comparing elements in two memory
locations. Formally, we define the concept of RAM-decision-
trees, and let that be our model of comparison based cache-
oblivious algorithms.
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Definition 1. A RAM-decision-tree is a rooted tree, with
a unary root called the start node, and with the other nodes
being of the following types:

• Comparison nodes, which are nodes of degree two, la-
beled with a pair (i, j) of indices. Such a node models
the comparison A[i] ≤ A[j], with the left subtree corre-
sponding to a positive outcome.

• Assignment nodes, which are nodes of degree one, la-
beled with a pair (i, j) of indices. Such a node models
the assignment A[i] := A[j].

• Result nodes, which are nodes of degree zero, labeled
with the answer of the computation.

In the case of sorting, the label of a result node is the
permutation of the input elements. We assume that the
input elements x0, x1, . . . , xN−1 initially are located in the
first locations of the array (i.e. A[i] = xi for i < N), and
that the remaining locations are undetermined (i.e. A[i] = ⊥
for i ≥ N , where ⊥ is some value which is not allowed to
take part in comparisons). A RAM-decision-tree is said to
be a correct sorting algorithm for input size N if for any
input of size N , the root-to-leaf path determined by the
input ends in a leaf labeled with the initial permutation of
the input elements. Clearly, a RAM-decision-tree can be
transformed into a standard decision-tree (see e.g. [6]) by
keeping track of elements positions, converting indices for
memory cells into indices for elements, and finally removing
the assignment nodes. In short, RAM-decision-trees are a
version of decision trees with explicit references to memory
locations (which is necessary to capture I/O issues). By
pruning subtrees which cannot be reached by any input, we
may assume that a RAM-decision-tree which is a correct
sorting algorithm has exactly N ! leaves.

In the cache-oblivious model, paging is taking place (even
though the algorithm is ignorant hereof), and the goal is
to bound the number of I/Os (page swaps) for any values
of B and M . We now add paging to our model. We assume
that the memory A is divided into contiguous blocks of B
memory cells, such that the kth block comprises the memory
cells A[kB], A[kB + 1], . . . , A[(k + 1)B − 1], for 0 ≤ k. The
cache has room for M/B = m blocks.

For simplicity, and without loss of generality, we in the
model assume that there always are exactly m blocks in the
cache, and that its initial contents is the first m blocks of
A. An I/O is specified by an ordered pair (k, l) of block
indices, where block k is currently not in cache, and block
l is currently in cache. The effect of this I/O is to move
block k into the cache and block l out of the cache.

Definition 2. Given a RAM-decision-tree T , a paging
is an annotation of each edge of T with a sequence (possible
of length zero) of I/Os, such that for any decision node or
assignment node v with label (i, j), the two memory loca-
tions A[i] and A[j] are in blocks currently residing in mem-
ory.

In the above, the word “currently” has the natural mean-
ing given by interpreting each root-to-leaf path as a time-
line.

Note that our definition of paging captures online paging
strategies. This is in contrast to the original definition of

cache-obliviousness [18], where optimal offline paging is as-
sumed (corresponding to edges having one annotation for
each leaf below it in the RAM-decision-tree). Allowing only
online paging strategies is arguably a more realistic defi-
nition of the cache-oblivious model, and does not affect the
existing upper bounds, as the proofs of these still work if the
online LRU paging policy is assumed instead of optimal off-
line paging. However, if the original definition is preferred,
we can convert our results to it at the cost of a factor two in
M and in the I/O bound, by appealing to Sleator and Tar-
jans classic competitiveness result [23] for LRU-paging. Also
note that like [18], we assume the cache is fully associative.

3. RESULTS
We first consider the problem of comparison based sorting.

Below, in Theorem 1 and it corollaries, we show that cache-
oblivious comparison based sorting is not possible without
a tall cache assumption.

We first note that if the Lazy Funnelsort algorithm of [14]
is tuned to the tall cache assumption M ≥ B1+ε, i.e. its pa-
rameters are chosen such that the algorithm is I/O-optimal
when M = B1+ε, then it for the case M � B (defined for
instance as M ≥ B2) is a factor of Θ(1/ε) worse than the
optimal I/O bound.

Corollary 2 below states that this is best possible. Hence
it gives a trade-off for comparison based sorting which is
inherent in the cache-oblivious model—a trade-off between
the strength of the tall cache assumption and the overhead
for the case M � B. In particular, Corollary 2 proves that
no cache-oblivious algorithm for comparison based sorting
can be asymptotically I/O optimal for all values of M and B.

Corollary3 is a version of Corollary 2 focusing on the two
extreme points 1 and M/2 of the possible range of B. It
even more directly shows that I/O-optimal cache-oblivious
comparison based sorting without a tall cache assumption
does not exist. It also has the natural interpretation that if
we want a cache-oblivious algorithm which is I/O-optimal
for the case B = M/2, then binary mergesort (the recur-
sive version, in order to get M in the denominator in the
log N/M part of its I/O bound) is best possible—any other
algorithm will be the same factor of Θ(log M) worse than
the optimal I/O bound for the case M � B.

Theorem 1 (Comparison Based Sorting). Let T be
a RAM-decision-tree which is a correct sorting algorithm for
input size N . Let P1 be a paging with block size B1 and
memory size M , and let P2 be a paging with block size B2

and memory size M , where B2 > B1 and B1 divides B2. If
all root-to-leaf paths contain at most t1 I/Os in P1 and at
most t2 I/Os in P2, then the following holds:

8t1B1 + 3t1B1 log
8Mt2
B1t1

≥ N log
N

M
− 1.45N .

Corollary 1. For any cache-oblivious comparison based
sorting algorithm, let ti be an upper bound on the number of
I/Os performed for block size Bi. If for some real number
c > 0 we have

t1 = c · SortM,B1(N) ,

then

t2 ≥ SortM,B2(N) · log(M/B2)

log(M/B1)
· cB2

8M
· (M/B1)

1/8c ,

under the conditions 8Mt2
t1B1

≥ 4 and N ≥ 212M .
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Proof. By the conditions assumed, we from Theorem 1
get

8t1B1 log
8Mt2
B1t1

≥ N log
N

M
.

Inserting t1 = c N
B1

logM/B1
N
M

and manipulating gives

8c log
8Mt2

cN logM/B1
N
M

≥ log
M

B1

t8c
2 (

8M

cN logM/B1
N
M

)8c ≥ M

B1

t2 ≥ (
M

B1
)1/8c · cN logM/B1

N
M

8M

By the values of SortM,B1(N) and SortM,B2(N), the state-
ment follows.

Corollary 2. Let B1 = 1 and B2 = M1/(1+ε) for some
ε with 0 < ε < 1/2. For any cache-oblivious comparison
based sorting algorithm, let ti be an upper bound on the num-
ber of I/Os performed for block size Bi. If for real num-
bers c ≥ 0 and d ≥ 0 we have t1 = c · SortM,B1(N) and
t2 = d · SortM,B2(N), then we must have c > 1/8ε.

Proof. Assume that c ≤ 1/8ε. As t1 and t2 just need
to be upper bounds, we may without loss of generality also
assume c ≥ 1 and d ≥ 1. Using M/B2 = Mε/(1+ε), it can be
checked that the condition 8Mt2

t1B1
≥ 4 holds. The inequality

from Corollary 1 gives

d ≥ log M/B2

log M/B1
· cB2

8M
· (M/B1)

1/8c .

Inserting the values of B1 and B2 leads to

8d

c
· ε

1 + ε
≥ M1/8c−ε/(1+ε) .

The assumption c ≤ 1/8ε implies 1/8c − ε/(1 + ε) > 0,
which contradicts the inequality above for M → ∞ (and
N ≥ 212M , as required by Corollary 1), since the left-hand
side is a constant.

Corollary 3. Let B1 = 1 and B2 = M/2. For any
cache-oblivious comparison based sorting algorithm, let ti

be an upper bound on the number of I/Os performed for
block size Bi. If for a real number d ≥ 0 we have t2 =
d · SortM,B2(N), then we must have t1 > 1/8 · N log2 N/M .

Proof. Assume t1 ≤ 1/8 · N log2 N/M = 1/8 · log M ·
SortM,B1(N). We note that the proof of Corollary 1 goes
through, even if c is not at constant but a function of B, M ,
and N . The assumption above is equivalent to the assump-
tion c ≤ 1/8 · log M (for all B, M , and N). As t1 and t2 just
need to be upper bounds, we may without loss of generality
assume c = 1/8 · log M and d ≥ 1. It can be checked by
insertion that the condition 8Mt2

t1B1
≥ 4 holds. The inequality

from Corollary 1 gives

d ≥ log M/B2

log M/B1
· cB2

8M
· (M/B1)

1/8c .

Inserting the values of B1 and B2 leads to

16d ≥ log M · c · M1/8c .

As M1/ log M = 2, the assumption c = 1/8 · log M contra-
dicts the inequality above for M → ∞ (and N ≥ 212M , as
required by Corollary 1), since the left-hand side is a con-
stant.

We now turn to the problem of permuting. The follow-
ing theorem states that for all possible tall cache assump-
tions B ≤ Mδ, no cache-oblivious permuting algorithm ex-
ists with an I/O bound (even only in the average case sense)
matching the worst case bound in the I/O model

Theorem 2 (Permuting). For all δ > 0, there ex-
ists no cache-oblivious algorithm for permuting that for all
M ≥ 2B and 1 ≤ B ≤ Mδ achieves O(PermM,B(N)) I/Os
averaged over all possible permutations of size N .

4. PROOFS

4.1 Sorting
In this section, we prove Theorem 1. Let t1 and t2 be

upper bounds on the number of I/Os in P1, respectively P2,
on any root-to-leaf path in T . We will put T and its two
annotations P1 and P2 through four transformations.

The first transformation is to normalize P1 and P2. This
transformation is done edge by edge in a top down fashion in
T as follows, where i is either 1 or 2: For a given edge e, the
net effect of the sequence σe of I/Os associated with e in Pi

is to change k blocks and leave M/Bi −k blocks unchanged,
for some integer k between 0 and M/Bi. We first substitute
σe by the obvious k I/Os giving the same net effect. At
most two of these k I/Os move into cache a block containing
an element accessed in the node v (of type comparison or
assignment) at the lower end of e. These we keep at e, and
the rest of the k I/Os, we push down, i.e. we append them
to the sequences of I/Os in Pi at each of the (at most two)
edges leading from v to its children (dublicating the I/Os
if v is binary). When the normalization process reaches an
edge e above a leaf (i.e. a result node), the I/Os at e in
Pi are discarded. Clearly, the normalization process cannot
increase the number of I/Os in Pi on any root-to-leaf path.
In the remainder of this proof, P1 and P2 will refer to the
normalized versions.

The second transformation is to annotate each node v
in T with a working set W (v). The working set is a set of
indices of A (i.e. a set of memory locations), and is defined
inductively in a top down fashion as follows: The working
set of the root is {0, 1, 2, . . . , M − 1}, i.e. the initial contents
of the cache. The working set for a node v with parent u is
given by

W (v) = (W (u) ∩ Cache2) ∪ Cache1 ,

where Cachei means the memory locations contained in the
blocks residing in cache at v, according to paging Pi. Effec-
tively, the working set tracks the contents of Cache1, except
that indices will not leave the working set if they are still
part of Cache2.

The third transformation is done to ensure the following
invariants, where the total order of a set of indices means
the total order of the elements currently residing at these
memory locations:
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1. The total order of the working set is known.

2. When a block b is read into cache in P2, the total order
is known for the parts of b which are not in the working
set.

The transformation involves the substitution of nodes of T
with specific RAM-decision-trees, and the copying of entire
subtrees of T to each of the leaves of these added RAM-
decision-trees. The annotation (I/O and working set) of T
will be copied along, but the I/O annotation is not neces-
sarily a valid paging anymore—we allow comparison of ele-
ments at memory locations not known to be in Cachei, and
only keep the I/O annotation for counting purposes.

The transformation proceeds in a top-down fashion. We
first establish the invariants at the root by adding a RAM-
decision-tree which will sort the contents of cache and the
(N − M)/B2 blocks of size B2 not in cache, i.e. sort the
memory segments A[0 . . . (M − 1)], A[M . . . (M + B2 − 1)],
A[(M + B2) . . . (M + 2B2 − 1)],. . . , A[(N −B2) . . . (N − 1)]
individually. This can be done by a RAM-decision-tree of
height M log M + B2 log B2(N − M)/B2 ≤ N log M , using
e.g. Mergesort as the sorting algorithm. At each leaf of this
tree, we attach a copy of T . The resulting tree could now
be heavily pruned for subtrees which are not reachable by
any input, but for simplicity, we postpone all such pruning
until the entire transformation has been done.

We now continue the top-down transformation of the edges
which are copies of edges in T . For each such edge e = (u, v),
with u being the parent of v, we build a RAM-decision-tree
Te, insert it at e’s position, and insert a copy of the subtree
rooted at v at each leaf of Te.

To build Te, we first look at the at most two blocks in
Cache2 which was put into Cache2 by an I/O on the edge.
For such a block b, the set of indices b ∩ W , i.e. the part
of b belonging to the working set, cannot have gained new
members (but can have lost some) since b last time was in
Cache2. This is because W can only gain members due to
I/Os from P1, and by the normalization step, such an I/O is
immediately followed by an access to a member of the block
b′ put into Cache1. Since B1 divides B2, b′ is contained
in b, and hence b would have been put into Cache2 at the
same time. Let K be the set of indices in b which has been
removed from W since the last time b was in Cache2, and
let L be the set of indices in b which was not in W last time
b was in Cache2. By Invariants 1 and 2, the total order of K
and of L is known, so reestablishing Invariant 2 is equivalent
to merging two sorted lists of length |K| and |L|. The top of
Te will be an optimal RAM-decision-tree Tb reestablishing
Invariant 2. As |K|+ |L| ≤ B2, this tree has height at most
4|K| + |K| log B2

|K| [20]. If there is a second such block, we

repeat the procedure, inserting another such tree under each
leaf of the current Te.

At the edge e, we now look at the at most two blocks in
Cache1 which was put into Cache1 by an I/O on e. Each of
these induces the addition of at most B1 new indices in the
working set. To maintain Invariant 1, we will for each new
index i resolve its order among the elements in the working
set. This is done by substituting each leaf of the current Te

by a RAM-decision-tree τi resolving this, and repeating the
substitution for each of the new indices. The RAM-decision-
tree τi is chosen to have optimal height among all RAM-
decision-tree resolving this given the partial order induced

by the comparisons on the path from the root of T down to e
and further on to the bottom of the current Te (including
previously added τi in the current Te).

The fourth and final transformation is just to convert the
tree into a standard decision-tree by discarding all anno-
tation and all unary nodes, by pruning subtrees which are
not reachable by any input, and by converting references to
memory locations into references to input elements. Clearly,
the resulting decision-tree is a sorting algorithm. Among the
binary nodes pruned are the copies of original binary nodes
in T . This is because all comparisons are between two ele-
ments of the working set (since Cache1 ⊆ W at all times),
and by Invariant 1, we had resolved the comparison before
we reached the binary node.

Thus, the height of the tree is bounded by the sum of the
heights of the trees we insert during transformation three.
The first tree inserted had height at most N log M . Any
root-to-leaf path in T contained at most t2 I/Os from P2.
Along any such path, at most t1B1 elements are added to
W . At the root we have |W | = M , and at a leaf we have
|W | ≥ M (since Cache1 contains M/B1 blocks at all times),
so at most t1B1 can leave W along such a path. To bound
the second types of trees inserted, let ki be the value |K|
for the ith I/O from P2 along such a path. The sum of
these trees along any root-to-leaf path is then bounded by�t2

i=1(4ki+ki log B2
ki

). By the convexity of the logarithm and�t2
i=1 ki ≤ t1B1, this sum is maximized for ki = t1B1/t2,

and is therefore bounded by 4t1B1 + t1B1 log B2t2
B1t1

.
To bound the third type of trees inserted, we along each

root-to-leaf path introduce epochs, defined by starting a
new epoch at the first node in T along the path for which
m2 = M/B2 I/Os from P2 have taken place since the start of
the current epoch. Due to normalization and the assumption
that B1 divides B2, we know that when new members are
added to W , the blocks of size B2 containing the new mem-
ber must be in Cache2. Hence, if |Cache2 ∩ W | = s at the
beginning of an epoch, then at most (M − s)+B2m2 ≤ 2M
elements can be added to W during an epoch. At all times
we have W ⊆ Cache1 ∪ Cache2, so taking into account the
contents of Cache1 at the beginning of the epoch, we see
that the union of the working sets at the nodes inside one
epoch on a root-to-leaf path is bounded in size by 3M .

We will now bound the heights of the τi trees (for the
insertion of i into W ) along a root-to-leaf path. As said, the
size B2 block bi containing i must be present in Cache2 when
i is inserted into W . We will attribute this insertion to the
I/O which inserted bi into Cache2. For a given block b whose
lifetime in Cache2 span r epochs, let kb

j be the number of i’s
attributed to b in the j’th of these epochs. We have at most
t2 kb

1 values along a root-to-leaf. For j ≥ 2, we associate
each kb

j with the epoch it relates to, and note that each
epoch can have at most m2 such values associated. As there
are at most t2/m2 epochs along a root-to-leaf, the number
of i’s along a root-to-leaf can be expressed as the sum of
at most t2 + m2(t2/m2) = 2t2 numbers. This sum, which
is the number of elements inserted into W along the path,
is bounded by t1B1. Each of the i’s counted by a kb

j value
comes from a sorted set (by Invariant 2), but the choice
from this set is done in an online fashion, and hence the
introduction of these kb

j elements into the working set cannot
be viewed just as merging of two sorted lists. In Section 4.2,
we give an algorithm based on exponential searches which
can be used to bound the heights of the τi trees. We use the
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bound stated in Lemma 2, with the set S being the union of
the working sets at the nodes inside the epoch on the root-
to-leaf path (although we do not have the total order of this
set, we have the total order of the actual working set inserted
into, and the proof of Lemma 2 still gives a bound on the
comparisons done during the exponential searches in our
setting). Using |S|+kb

j ≤ 4M , we by Lemma 2 get the bound�2t2
j=1(2kj log 4M

kj
+ 4kj) on the combined height of the τi

trees along a root-to-leaf, for values k1, k2, . . . , k2t2 fulfilling�2t2
j=1 kj ≤ t1B1. By the convexity of the logarithm, this

sum is bounded by 4t1B1 + 2t1B1 log 8Mt2
B1t1

.
Adding the bound for the three types of trees inserted

during the third transformation, we get that no root-to-leaf
path in the final tree is longer than

N log M + 8t1B1 + 3t1B1 log
8Mt2
B1t1

.

Since the final tree is a decision-tree for a sorting algorithm,
at least one leaf must have depth N log N − 1.45N , by the
standard comparison lower bound. This concludes the proof
of Theorem 1.

4.2 Exponential searches
In this section we consider the problem of inserting k ele-

ments into a sorted set S containing n elements x1 < · · · <
xn, where k ≤ n. For simplicity, we assume all keys are
distinct. Hwang and Lin [20] described how to optimally
merge two sorted lists of length k and n with O(k log k+n

k
)

comparisons and similar time bounds for merging two AVL-
trees and two level-linked (2,4)-trees were achieved in [17,
19].

Here, we consider a variant of the problem where the k el-
ements y1, . . . , yk are given online (not necessarily in sorted
order). When inserting the ith element yi, the elements
y1, . . . , yi−1 must already have been inserted. The algo-
rithm gets the order of y1, . . . , yi for free; in particular the
algorithm can assume to know the currently closest inserted
predecessor y′

i = max{yj | 1 ≤ j < i ∧ yj < yi} ∪ {−∞}
and successor y′′

i = min{yj | 1 ≤ j < i ∧ yj > yi}∪{∞}. In
the following, we consider how exponential searches achieves
similar comparison bounds for the online problem as for
the (offline) version considered by Hwang and Lin. The
algorithm is to repeatedly apply exponential searches as de-
scribed in Lemma 1 such that the insertion of yi is restricted
to [y′

i, y
′′
i ] ∩ S.

We first consider a single insertion of y into S. If y parti-
tions S into two sets S1 and S2, where all elements in S1 are
smaller than y and all elements in S2 are larger than y, then
an exponential search uses the following number of compar-
isons.

Lemma 1. An exponential search splitting a set S into
two non-empty sets S1 and S2 can be done with

2 log min{|S1|, |S2|} + 2

comparisons, provided min{|S1|, |S2|} ≥ 1. Otherwise at
most 2 comparisons are performed.

Proof. First compare y with x�n/2� to decide if |S1| ≤
n/2. If |S1| ≤ n/2, then start an exponential search at x1;
otherwise, start a symmetric exponential search at xn. As-
sume without loss of generality |S1| ≤ n/2. Compare y with
x1, x2, . . . , x2j , . . . for increasing j until y < x2j . If |S1| = 0

then in total two comparisons have been performed and we
are done. Otherwise 2i ≤ |S1| < 2i+1 and i + 1 compar-
isons have been performed to find i. Finally, a binary search
is performed among the 2i − 1 elements x2i , . . . , x2i+1−1.
Since the binary search requires i comparisons, the expo-
nential search in total requires 1 + (i + 1) + i = 2(i + 1) =
2�log |S1| + 2 comparisons.

Lemma 2. The online insertion of a permutation of k el-
ements into a sorted set S, where k ≤ |S|, can be done with

2k log |S|+k
k

+ 4k comparisons.

Proof. We repeatedly apply exponential searches as de-
scribed in Lemma 1 such that the insertion of yi is restricted
to [y′

i, y
′′
i ] ∩ S.

We view the sequence of insertions as creating a parti-
tion of S, where the insertion of yi partitions S ∩ [y′

i, y
′′
i ]

into S ∩ [y′
i, yi] and S ∩ ]yi, y

′′
i ]. The created partitions form

a partition tree, which is a binary tree where each node v
is labeled with a subset Sv of S as follows: The root rep-
resents the whole set S, the leaves the final partition, and
each internal node the insertion of an yi such that the node
represents the set S ∩ [y′

i, y
′′
i ], and the two children the sets

S ∩ [y′
i, yi] and S ∩ ]yi, y

′′
i ].

We now analyze the number of comparisons for the k in-
sertions bottom-up on the partition tree. The cost of a leaf
is zero. For an internal node v with children with sets S1

and S2, where Sv = S1 ∪ S2, we by Lemma 1 has an associ-
ated cost of 2 log min{|S1|, |S2|}+2 comparisons. Assuming
that each insertion generates two non-empty subsets, we now
prove by induction that the total number of comparisons in
the subtree rooted at a node v is at most

2
�

w∈Lv

log |Sw| − 2 log |Sv | − 4 + 4|Lv | , (1)

where Lv denotes the leaves below v (if v is leaf then Lv =
{v}). If v is a leaf, the sum (1) is zero since v is the only leaf.
For an internal v with children v1 and v2, we from the induc-
tion hypothesis get that the total number of comparisons is
at most

2
�

w∈Lv1

log |Sw| − 2 log |Sv1 | − 4 + 4|Lv1 |

+ 2
�

w∈Lv2

log |Sw | − 2 log |Sv2 | − 4 + 4|Lv2 |

+ 2 log min{|Sv1 |, |Sv2 |} + 2

≤ 2
�

w∈Lv

log |Sw| − 2 log |Sv| − 4 + 4|Lv | ,

since we have that log |Sv| ≤ log(2max{|Sv1 |, |Sv2 |}) = 1 +
log max{|Sv1 |, |Sv2 |} and |Lv | = |Lv1 | + |Lv2 |. By letting
log |Sv| cancel the contribution of one leaf, and exploit-
ing the convexity of the log function we get that (1) is

bounded by 2(|Lv | − 1) log |Sv|
|Lv |−1

− 4 + 4|Lv |. Since the

tree has k + 1 leaves, the total number of comparisons is

at most 2k log |S|
k

+ 4k, assuming all insertions induce non-
empty partitions. If k1 insertions induce empty partitions
and k2 = k−k1 insertions induce non-empty partitions, then

the total number of comparisons is 2k1 +4k2 +2k2 log |S|
k2

≤
4k + 2k log |S|+k

k
.
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4.3 Permutation
In this section we consider lower bound trade-offs for cache-

oblivious algorithms for permuting. The computational prob-
lem is the following: Given an array of N elements and a
permutation, rearrange the elements in the array according
to the input permutation. We assume that the algorithm has
complete knowledge about the permutation, implying that
the only computational task is to move the input elements
to the given destination cells.

In the RAM model, the problem is trivially solved us-
ing O(N) element moves. In the I/O model, Aggarwal and
Vitter [2] showed that the I/O complexity of the problem is
Θ(min{N, Sort(N)}), i.e. an optimal external memory per-
muting algorithm is to move one element per I/O or applying
an optimal sorting algorithm, depending on what algorithm
performs the fewest I/Os. In this section, we prove that a
similar I/O bound cannot be achieved in the cache-oblivious
model—not even in the presence of a tall cache assumption.

Our proof uses ideas from the permutation lower bound
proof of Aggarwal and Vitter [2]: The lower bound is achieved
by counting how many permutations can at most be achieved
by the I/Os performed so far. In contrast to [2], our anal-
ysis is performed with respect to two different block sizes
simultaneously.

Let A be a cache-oblivious algorithm for permuting. Let
t1 and t2 denote an upper bound on the number of I/Os
done by two optimal offline I/O strategies for respectively
block sizes B1 and B2, memory size M , and on any input
permutation of N elements. We assume that B1 ≤ B2 and
that B1 divides B2. The following lemma states our main
lower bound trade-off between t1 and t2.

Lemma 3. If k = t1B1/t2, then

(B2!)
N/B2

�
(N/B2 + t2)

�
B2

k

��
2M − B2 + k

k

�

+ (M/B2)

�
B2

k

��2t2

≥ N ! .

Proof. In the following, we for each input permutation
transform A into a new permuting algorithm A′ together
with an explicit sequence of I/Os for block size B2 and
memory size 2M . We will use the properties of these A′

algorithms to derive a lower bound trade-off for t1 and t2.
We first make two simplifying assumptions about A and

the optimal I/O strategies performed for block sizes B1 and
B2. Similar to Aggarwal and Vitter [2], we can assume that
there exists at most one copy of each element at any time:
Whenever an element is copied to another cell, the old cell is
assigned the nil value. To see this assume that the algorithm
maintains several copies of the same element. Since only
one copy of an element is part of the output, we can simply
cancel all copying of elements which are not part of the
output.

Secondly, for any block size there exists an optimal offline
I/O strategy where each block read is immediately followed
by an access to the block read. This follows by delaying
the I/Os of any optimal offline I/O strategy, such that a
block is read by an I/O just prior to the first access to any
element of the block. When analyzing the I/O sequences for
respectively block size B1 and B2 simultaneously, we can
therefore assume that when a block b1 of size B1 is read

into cache in, then the block b2 of size B2 containing b1 will
already have been read into cache when using block size B2.

For the algorithm A′, the cache will consist of two areas
of size M : The first M cells contain the “large” blocks of
size B2 currently swapped in by A if using block size B2,
and the second M cells contain the content of the memory
of A when using the “small” block size B1. The second area
will be simulated in M/B2 otherwise not used blocks by A′.
Below we give the details and describe how to ensure that
A′ only maintains one copy of each element.

Whenever a “large” block is read or written by A (when
using the offline I/O strategy for block size B2), we let A′

read or write the same block. Whenever A reads a “small”
block s, A′ moves the contents of s from the ”large” block
area to the “small” block area, exploiting that we can as-
sume that A will have the “large” block in internal memory
as discussed above. Finally, we consider the case where A is
evicting a “small” block s. If the “large” block � containing
s is in the “large” area, A′ moves the content of s from the
“small” area to the “large” area. The final case where � is
not in the “large” area can be avoided by moving the evic-
tion of s to just prior to the eviction of �. This is possible
since by definition, A can only access cells that are read into
cache; A cannot do any access to �, and therefore also not
to s, in the period between the eviction of � and the eviction
of s.

We will guarantee that for a “large” block read by A′,
there will at most be moved k elements between the “large”
area and the “small” area before the “large” block is evicted
from cache. This can be guaranteed by evicting a “large”
block from cache and immediately reloading it again when-
ever k cells have been moved from or to the “large” block.
This at most increases the number of I/Os for A′ from t2 to
t2+t1B1/k = 2t2 I/Os. Finally, we without loss of generality
can assume that A′ only accesses the first N/B2+t2 memory
blocks, since A′ at most loads t2 blocks from memory.

We will now argue that the number of permutations A′

can generate with t I/Os is bounded by

(B2!)
N/B2

�
(N/B2 + t2)

�
B2

k

��
2M − B2 + k

k

�

+ (M/B2)

�
B2

k

��t

. (2)

For a given state of A′, we define the working set to be
the cells of the “small” area together with the subblocks
of size B1 of blocks in the “large” area that the algorithm
accesses before the “large” block is evicted again. Since A′

knows the at most k elements of a “large” block it will access
during the block is in cache, we can assume that when A′

loads a block, A′ provides the at most k cells to be included
in the working set.

For each t ≥ 0, we will consider a superset St of all possi-
ble pairs of 〈permutation,working set〉 that can be generated
with t I/Os (the same permutation can appear several times
with distinct working sets). We require that S0, . . . , S2t2 sat-
isfy that if a permutation is included together with a given
working set, then all permutations which can be reached by
permuting the content internally in the working set and per-
muting the content internally in a block of size B2, excluded
the working set, is also in the superset. The consequence of
this assumption is that rearranging elements in the working
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set, either inside the “small” area or by moving blocks of
size B1 between the “small” and the “large” area, cannot
introduce new permutations.

In the initial state, we assume that the cache of A′ is
empty, but that all possible internal permutations of ele-
ments in the N/B2 blocks in memory are contained in S0,

i.e. |S0| = (B2!)
N/B2 .

If the tth I/O is a block read, then there are at most
N/B2 + t2 distinct blocks to read. There are

�
B2
k

�
distinct

ways to select k cells from the block read to add to the work-
ing set. For a 〈permutation,working set〉 in St−1, all possible
permutations of the existing working set and the k elements
are already contained in St−1. The only new permutations
to add to St are the possible ways to interleave the k new ele-
ments with the existing working set of size at most 2M−B2,
which is

�
2M−B2+k

k

�
. It follows that a block read can at most

increase the number of pairs 〈permutation,working set〉 by
a factor

(N/B2 + t2)

�
B2

k

��
2M − B2 + k

k

�
.

Evicting one of the M/B2 blocks to memory removes at
most k cells from the working set which are contained in the
block. Since all permutations of the k elements and of the
remaining B2−k elements in the block are already contained
in St−1, the only new permutations to add to St are all the
possible ways to interleave the k and B2 − k elements with
the existing working set, which is at most

�
B2
k

�
. It follows

that a block write can at most increase the number of pairs
〈permutation,working set〉 by a factor

(M/B2)

�
B2

k

�
.

It follows that t I/Os can at most increase the number of
permutations by a factor

(N/B2 + t2)

�
B2

k

��
2M − B2 + k

k

�
+ (M/B2)

�
B2

k

�
.

In total |St|, and therefore the number of possible permuta-
tions generated by A′ using t I/Os, is given by (2). Since A′

can generate all N ! possible permutations using 2t2 I/Os,
the lemma follows.

We note that the trade-off in Lemma 3 also holds in the
average case where each permutation is equally likely. As-
sume t1 and t2 is the average number of I/Os for block size
B1 and B2 over a uniform distribution of the input permu-
tations. Then for at least 3

4
N ! permutations there are less

than 4t1 I/Os for block size B1, and similarly for 3
4
N ! per-

mutations there are less than 4t2 I/Os for block size B2. We
have that for at least 1

2
N ! permutations there are at most

4t1 and 4t2 I/Os, respectively for block size B1 and B2. For
the average case we get the following.

Lemma 4. If k = t1B1/t2, then for the average case

(B2!)
N/B2

�
(N/B2 + 4t2)

�
B2

k

��
2M − B2 + k

k

�

+ (M/B2)

�
B2

k

��8t2

≥ 1

2
N ! .

We now give the proof of Theorem 2.

Proof of Theorem 2. For the sake of contradiction, as-
sume that there exists a δ > 0 and a cache-oblivious algo-
rithm that performs O(PermM,B(N)) for all M ≥ 2B and
1 ≤ B ≤ Mδ.

Taking the logarithm on both sides of the equation of
Lemma 4, and simplifying using M

B2
≤ N

B2
≤ t2, we get

c1(t2 log t2 + N log M + t1B1 log M) ≥ N log N ,

for some constant c1. Letting B1 = O(1) implies t1 = O(N),
and the above inequality can be reduced to

c2(t2 log t2 + N log M) ≥ N log N ,

for some constant c2. Letting N = M2c2 we get

t2 log t2 ≥ 1

2c2
N log N ,

implying that t2 ≥ 1
2c2

M2c2 . The contradiction follows by

letting B2 = Mδ , since SortM,Mδ (M2c2) = 2c2−1
1−δ

M2c2−δ is

asymptotic smaller than 1
2c2

M2c2 ≤ t2 for increasing M .
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