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Abstract
This paper presents asymptotically optimal algorithms for
rectangular matrix transpose, FFT, and sorting on comput-
ers with multiple levels of caching. Unlike previous optimal
algorithms, these algorithms are cache oblivious: no vari-
ables dependent on hardware parameters, such as cache size
and cache-line length, need to be tuned to achieve optimal-
ity. Nevertheless, these algorithms use an optimal amount
of work and move data optimally among multiple levels of
cache. For a cache with size Z and cache-line length L where
Z / Ω(L2) the number of cache misses for an m 0 n ma-
trix transpose is Θ(1 1 mn 2 L). The number of cache misses
for either an n-point FFT or the sorting of n numbers is
Θ(1 1 (n 2 L)(1 1 logZ n)). We also give an Θ(mnp)-work algo-
rithm to multiply an m 0 n matrix by an n 0 p matrix that in-
curs Θ(1 1 (mn 1 np 1 mp) 2 L 1 mnp 2 L 3 Z) cache faults.

We introduce an “ideal-cache” model to analyze our al-
gorithms, and we prove that an optimal cache-oblivious al-
gorithm designed for two levels of memory is also opti-
mal for multiple levels. We also prove that any optimal
cache-oblivious algorithm is also optimal in the previously
studied HMM and SUMH models. Algorithms developed
for these earlier models are perforce cache-aware: their be-
havior varies as a function of hardware-dependent parame-
ters which must be tuned to attain optimality. Our cache-
oblivious algorithms achieve the same asymptotic optimality,
but without any tuning.

1 Introduction
Resource-oblivious algorithms that nevertheless
use resources efficiently offer advantages of sim-
plicity and portability over resource-aware al-
gorithms whose resource usage must be pro-
grammed explicitly. In this paper, we study cache
resources, specifically, the hierarchy of memories
in modern computers. We exhibit several “cache-
oblivious” algorithms that use cache as effectively
as “cache-aware” algorithms.

Before discussing the notion of cache oblivi-
ousness, we first introduce the (Z 4 L) ideal-cache
model to study the cache complexity of algo-
rithms. This model, which is illustrated in Fig-
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Figure 1: The ideal-cache model

ure 1, consists of a computer with a two-level
memory hierarchy consisting of an ideal (data)
cache of Z words and an arbitrarily large main
memory. Because the actual size of words in a
computer is typically a small, fixed size (4 bytes,
8 bytes, etc.), we shall assume that word size is
constant; the particular constant does not affect
our asymptotic analyses. The cache is partitioned
into cache lines, each consisting of L consecutive
words that are always moved together between
cache and main memory. Cache designers typ-
ically use L 6 1, banking on spatial locality to
amortize the overhead of moving the cache line.
We shall generally assume in this paper that the
cache is tall:

Z 7 Ω(L2) 4 (1)
which is usually true in practice.

The processor can only reference words that re-
side in the cache. If the referenced word belongs
to a line already in cache, a cache hit occurs, and
the word is delivered to the processor. Otherwise,
a cache miss occurs, and the line is fetched into
the cache. The ideal cache is fully associative [18,
Ch. 5]: cache lines can be stored anywhere in the
cache. If the cache is full, a cache line must be
evicted. The ideal cache uses the optimal off-line
strategy of replacing the cache line whose next ac-
cess is farthest in the future [7], and thus it exploits
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temporal locality perfectly.
An algorithm with an input of size n is mea-

sured in the ideal-cache model in terms of its work
complexity W(n)—its conventional running time
in a RAM model [4]—and its cache complexity
Q(n; Z 4 L)—the number of cache misses it incurs
as a function of the size Z and line length L of the
ideal cache. When Z and L are clear from context,
we denote the cache complexity as simply Q(n) to
ease notation.

We define an algorithm to be cache aware if it
contains parameters (set at either compile-time or
runtime) that can be tuned to optimize the cache
complexity for the particular cache size and line
length. Otherwise, the algorithm is cache obliv-
ious. Historically, good performance has been
obtained using cache-aware algorithms, but we
shall exhibit several cache-oblivious algorithms
that are asymptotically as efficient as their cache-
aware counterparts.

To illustrate the notion of cache awareness,
consider the problem of multiplying two n � n
matrices A and B to produce their n � n product C.
We assume that the three matrices are stored in
row-major order, as shown in Figure 2(a). We
further assume that n is “big,” i.e. n 6 L in order
to simplify the analysis. The conventional way to
multiply matrices on a computer with caches is to
use a blocked algorithm [17, p. 45]. The idea is to
view each matrix M as consisting of (n

�
s) � (n

�
s)

submatrices Mi j (the blocks), each of which has
size s � s, where s is a tuning parameter. The
following algorithm implements this strategy:

BLOCK-MULT(A � B � C � n)
1 for i � 1 to n � s
2 do for j � 1 to n � s
3 do for k � 1 to n � s
4 do ORD-MULT(Aik � Bk j � Ci j � s)

where ORD-MULT(A 4 B 4 C 4 s) is a subroutine that
computes C � C � AB on s � s matrices using
the ordinary O(s3) algorithm. (This algorithm
assumes for simplicity that s evenly divides n,
but in practice s and n need have no special
relationship, which yields more complicated code
in the same spirit.)

Depending on the cache size of the machine
on which BLOCK-MULT is run, the parameter s
can be tuned to make the algorithm run fast, and
thus BLOCK-MULT is a cache-aware algorithm. To
minimize the cache complexity, we choose s so
that the three s � s submatrices simultaneously
fit in cache. An s � s submatrix is stored on
Θ(s � s2 �

L) cache lines. From the tall-cache as-

sumption (1), we can see that s 7 Θ( � Z). Thus,
each of the calls to ORD-MULT runs with at most
Z

�
L 7 Θ(s2 �

L) cache misses needed to bring the
three matrices into the cache. Consequently, the
cache complexity of the entire algorithm is Θ(1 �
n2 �

L � (n
� � Z)3(Z

�
L)) 7 Θ(1 � n2 �

L � n3 �
L � Z),

since the algorithm has to read n2 elements, which
reside on � n2 �

L 	 cache lines.
The same bound can be achieved using a simple

cache-oblivious algorithm that requires no tuning
parameters such as the s in BLOCK-MULT. We
present such an algorithm, which works on gen-
eral rectangular matrices, in Section 2. The prob-
lems of computing a matrix transpose and of per-
forming an FFT also succumb to remarkably sim-
ple algorithms, which are described in Section 3.
Cache-oblivious sorting poses a more formidable
challenge. In Sections 4 and 5, we present two
sorting algorithms, one based on mergesort and
the other on distribution sort, both which are op-
timal.

The ideal-cache model makes the perhaps-
questionable assumption that memory is man-
aged automatically by an optimal cache replace-
ment strategy. Although the current trend in
architecture does favor automatic caching over
programmer-specified data movement, Section 6
addresses this concern theoretically. We show
that the assumptions of two hierarchical mem-
ory models in the literature, in which mem-
ory movement is programmed explicitly, are ac-
tually no weaker than ours. Specifically, we
prove (with only minor assumptions) that opti-
mal cache-oblivious algorithms in the ideal-cache
model are also optimal in the hierarchical mem-
ory model (HMM) [1] and in the serial uniform
memory hierarchy (SUMH) model [5, 28]. Sec-
tion 7 discusses related work, and Section 8 offers
some concluding remarks.

2 Matrix multiplication
This section describes an algorithm for multiply-
ing an m � n by an n � p matrix cache-obliviously
using Θ(mnp) work and incurring Θ(1 � (mn �
np � mp)

�
L � mnp

�
L � Z) cache misses. These

results require the tall-cache assumption (1) for
matrices stored with in a row-major layout for-
mat, but the assumption can be relaxed for cer-
tain other layouts. We also discuss Strassen’s
algorithm [25] for multiplying n � n matrices,
which uses Θ(nlg7) work1 and incurs Θ(1 � n2 �

L �
1We use the notation lg to denote log2.
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nlg7 �
L � Z) cache misses.

In [8], two of the authors analyzed an optimal
divide-and-conquer algorithm for n � n matrix
multiplication that contained no tuning parame-
ters, but we did not study cache-obliviousness per
se. That algorithm can be extended to multiply
rectangular matrices. To multiply a m � n matrix
A and a n � p matrix B, the algorithm halves the
largest of the three dimensions and recurs accord-
ing to one of the following three cases:

(a) AB 7
�

A1
A2 � B 7

�
A1B
A2B � 4

(b) AB 7�� A1 A2 � � B1
B2 � 7 A1B1 � A2B2 4

(c) AB 7 A � B1 B2 � 7�� AB1 AB2 ���
In case (a), we have m � max 	 n 4 p 
 . Matrix A is
split horizontally, and both halves are multiplied
by matrix B. In case (b), we have n � max 	 m 4 p 
 .
Both matrices are split, and the two halves are
multiplied. In case (c), we have p � max 	 m 4 n 
 .
Matrix B is split vertically, and each half is multi-
plied by A. For square matrices, these three cases
together are equivalent to the recursive multipli-
cation algorithm described in [8]. The base case
occurs when m 7 n 7 p 7 1, in which case the two
elements are multiplied and added into the result
matrix.

It can be shown by induction that the work of
this algorithm is O(mnp). Although this straight-
forward divide-and-conquer algorithm contains
no tuning parameters, it uses cache optimally. To
analyze the algorithm, we assume that the three
matrices are stored in row-major order, as shown
in Figure 2(a). We further assume that any row in
each of the matrices does not fit in 1 cache line,
that is, min 	 m 4 n 4 p 
�� L. [The final version of
this paper will contain the analysis for the general
case.]

The following recurrence describes the cache
complexity:

Q(m � n � p) ��� �� O((mn � np � mp) � L) if (mn � np � mp) ��� Z �
2Q(m � 2 � n � p) � O(1) if m � n and m � p �
2Q(m � n � 2 � p) � O(1) if n � m and n � p �
2Q(m � n � p � 2) � O(1) otherwise �

(2)

where � is a constant chosen sufficiently small to
allow the three submatrices (and whatever small
number of temporary variables there may be) to
fit in the cache. The base case arises as soon as
all three matrices fit in cache. Using reasoning
similar to that for analyzing ORD-MULT within
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Figure 2: Layout of a 16 � 16 matrix in (a) row major, (b)
column major, (c) 4 � 4-blocked, and (d) bit-interleaved
layouts.

BLOCK-MULT, the matrices are held on Θ((mn �
np � mp)

�
L) cache lines, assuming a tall cache.

Thus, the only cache misses that occur during
the remainder of the recursion are the Θ((mn �
np � mp)

�
L) cache misses that occur when the

matrices are brought into the cache. The recur-
sive case arises when the matrices do not fit in
cache, in which case we pay for the cache misses
of the recursive calls, which depend on the di-
mensions of the matrices, plus O(1) cache misses
for the overhead of manipulating submatrices.
The solution to this recurrence is Q(m 4 n 4 p) 7
O(1 � (mn � np � mp)

�
L � mnp

�
L � Z), which is

the same as the cache complexity of the cache-
aware BLOCK-MULT algorithm for square matri-
ces. Intuitively, the cache-oblivious divide-and-
conquer algorithm uses cache effectively, because
once a subproblem fits into the cache, no more
cache misses occur for smaller subproblems.

We require the tall-cache assumption (1) in this
analysis because the matrices are stored in row-
major order. Tall caches are also needed if matri-
ces are stored in column-major order (Figure 2(b)),
but the assumption that Z 7 Ω(L2) can be re-
laxed for certain other matrix layouts. The s � s-
blocked layout (Figure 2(c)), for some tuning pa-
rameter s, can be used to achieve the same bounds
with the weaker assumption that the cache holds
at least some sufficiently large constant number
of lines. The cache-oblivious bit-interleaved lay-
out (Figure 2(d)) has the same advantage as the
blocked layout, but no tuning parameter need
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be set, since submatrices of size Θ( � L � � L) are
cache-obliviously stored on one cache line. The
advantages of bit-interleaved and related layouts
have been studied in [14] and [9, 10]. One of the
practical disadvantages of bit-interleaved layouts
is that index calculations on conventional micro-
processors can be costly.

For square matrices, the cache complexity
Q(n) 7 Θ(1 � n2 �

L � n3 �
L � Z) of the cache-

oblivious matrix multiplication algorithm
matches the lower bound by Hong and Kung [19].
This lower bound holds for all algorithms that ex-
ecute the Θ(n3) operations given by the definition
of matrix multiplication

ci j 7
n

∑
k � 1

aikbk j �
No tight lower bounds for the general prob-
lem of matrix multiplication are known. By us-
ing an asymptotically faster algorithm, such as
Strassen’s algorithm [25] or one of its variants
[31], both the work and cache complexity can be
reduced. Indeed, Strassen’s algorithm, which is
cache oblivious, can be shown to have cache com-
plexity O(1 � n2 �

L � nlg7 �
L � Z).

3 Matrix transposition and FFT
This section describes a cache-oblivious algorithm
for transposing a m � n matrix that uses O(mn)
work and incurs O(1 � mn

�
L) cache misses, which

is optimal. Using matrix transposition as a sub-
routine, we convert a variant [30] of the “six-
step” fast Fourier transform (FFT) algorithm [6]
into an optimal cache-oblivious algorithm. This
FFT algorithm uses O(n lg n) work and incurs
O � 1 � (n

�
L) � 1 � logZ n � � cache misses.

The problem of matrix transposition is defined
as follows. Given an m � n matrix stored in a
row-major layout, compute and store AT into an
n � m matrix B also stored in a row-major layout.
The straightforward algorithm for transposition
that employs doubly nested loops incurs Θ(mn)
cache misses on one of the matrices when mn � Z,
which is suboptimal.

Optimal work and cache complexities can
be obtained with a divide-and-conquer strategy,
however. If n � m, we partition

A 7 (A1 A2) 4 B 7
�

B1
B2 � �

Then, we recursively execute TRANSPOSE(A1 4 B1)
and TRANSPOSE(A2 4 B2). If m 6 n, we divide ma-
trix A horizontally and matrix B vertically and

likewise perform two transpositions recursively.
The next two lemmas provide upper and lower
bounds on the performance of this algorithm.

Lemma 1 The cache-oblivious matrix-transpose algo-
rithm involves O(mn) work and incurs O(1 � mn

�
L)

cache misses for an m � n matrix.

Proof. See Appendix A.

Theorem 2 The cache-oblivious matrix-transpose al-
gorithm is asymptotically optimal.

Proof. For an m � n matrix, the matrix-
transposition algorithm must write to mn
distinct elements, which occupy at least�
mn

�
L � 7 Ω(1 � mn

�
L) cache lines.

As an example of application of the cache-
oblivious transposition algorithm, in the rest of
this section we describe and analyze a cache-
oblivious algorithm for computing the discrete
Fourier transform of a complex array of n ele-
ments, where n is an exact power of 2. The basic
algorithm is the well-known “six-step” variant [6,
30] of the Cooley-Tukey FFT algorithm [11]. Using
the cache-oblivious transposition algorithm, how-
ever, the FFT becomes cache-oblivious, and its
performance matches the lower bound by Hong
and Kung [19].

Recall that the discrete Fourier transform (DFT)
of an array X of n complex numbers is the array Y
given by

Y[i] 7 n � 1

∑
j � 0

X[ j] � � i j
n 4 (3)

where � n 7 e2 ��� � 1 	 n is a primitive nth root of
unity, and 0 
 i � n.

Many known algorithms evaluate Equation (3)
in time O(n lg n) for all integers n [13]. In this
paper, however, we assume that n is an exact
power of 2, and compute Equation (3) according
to the Cooley-Tukey algorithm, which works re-
cursively as follows. In the base case where n 7
O(1), we compute Equation (3) directly. Other-
wise, for any factorization n 7 n1n2 of n, we have

Y[i1 � i2n1] 7
n2 � 1

∑
j2
� 0

��
n1 � 1

∑
j1
� 0

X[ j1n2 � j2] � � i1 j1
n1 � � � i1 j2

n � � � i2 j2
n2 �

(4)
Observe that both the inner and the outer sum-
mation in Equation (4) is a DFT. Operationally,
the computation specified by Equation (4) can be
performed by computing n2 transforms of size n1
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(the inner sum), multiplying the result by the fac-
tors � � i1 j2

n (called the twiddle factors [13]), and
finally computing n1 transforms of size n2 (the
outer sum).

We choose n1 to be 2
�
lg n 	 2 � and n2 to be 2

�
lg n 	 2 � .

The recursive step then operates as follows.

1. Pretend that input is a row-major n1
� n2

matrix A. Transpose A in-place, i.e., use
the cache-oblivious algorithm to transpose A
onto an auxiliary array B, and copy B back
onto A. Notice that if n1 7 2n2, we can con-
sider the matrix to be made up of records
containing two elements.

2. At this stage, the inner sum corresponds to
a DFT of the n2 rows of the transposed ma-
trix. Compute these n2 DFT’s of size n1 recur-
sively. Observe that, because of the previous
transposition, we are transforming a contigu-
ous array of elements.

3. Multiply A by the twiddle factors, which can
be computed on the fly with no extra cache
misses.

4. Transpose A in-place, so that the inputs to
the next stage is arranged in contiguous lo-
cations.

5. Compute n1 DFT’s of the rows of the matrix,
recursively.

6. Transpose A in-place, so as to produce the
correct output order.

It can be proven by induction that the work
complexity of this FFT algorithm is O(n lgn). We
now analyze its cache complexity. The algorithm
always operates on contiguous data, by construc-
tion. In order to simplify the analysis of the
cache complexity, assume a tall cache, in which
case each transposition operation and the multi-
plication by the twiddle factors require at most
O(1 � n

�
L) cache misses. Thus, the cache com-

plexity satisfies the recurrence

Q(n) 
 �� � O(1 � n
�

L) 4 if n 
 � Z 4
n1Q(n2) � n2Q(n1) otherwise 4

� O(1 � n
�

L)
(5)

for a sufficiently small constant � chosen such that
a subproblem of size � Z fits in cache. This recur-
rence has solution

Q(n) 7 O � 1 � (n
�

L) � 1 � logZ n � � 4
which is asymptotically optimal for a Cooley-
Tukey algorithm, matching the lower bound by
Hong and Kung [19] when n is an exact power

L1

k-merger

R

buffers

L � k

Figure 3: Illustration of a k-merger. A k-merger is built
recursively out of � k “left” � k-mergers L1 � L2 �
	
	
	 � L � k,
a series of buffers, and one “right” � k-merger R.

of 2. As with matrix multiplication, no tight lower
bounds for cache complexity are known for the
general problem of computing the DFT.

4 Funnelsort
Although it is cache oblivious, algorithms like fa-
miliar two-way merge sort are not asymptotically
optimal with respect to cache misses. The Z-
way mergesort mentioned by Aggarwal and Vit-
ter [3] is optimal in terms of cache complexity,
but it is cache aware. This section describes a
cache-oblivious sorting algorithm called “funnel-
sort.” This algorithm has an asymptotically op-
timal work complexity O(n lg n), and an optimal
cache complexity O � 1 � (n

�
L) � 1 � logZ n � � if the

cache is tall.
Funnelsort is similar to mergesort. In order to

sort a (contiguous) array of n elements, funnelsort
performs the following two steps:

1. Split the input into n1 	 3 contiguous arrays of
size n2 	 3, and sort these arrays recursively.

2. Merge the n1 	 3 sorted sequences using a n1 	 3-
merger, which is described below.

Funnelsort differs from mergesort in the way
the merge operation works. Merging is per-
formed by a device called a k-merger, which in-
puts k sorted sequences and merges them. A k-
merger operates by recursively merging sorted se-
quences that become progressively longer as the
algorithm proceeds. Unlike mergesort, however,
a k-merger stops working on a merging subprob-
lem when the merged output sequence becomes
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“long enough,” and it resumes working on an-
other merging subproblem.

Since this complicated flow of control makes a
k-merger a bit tricky to describe, we explain the
operation of the k-merger pictorially. Figure 3
shows a representation of a k-merger, which has
k sorted sequences as inputs. Throughout its ex-
ecution, the k-merger maintains the following in-
variant.

Invariant The invocation of a k-merger outputs the
first k3 elements of the sorted sequence obtained by
merging the k input sequences.

A k-merger is built recursively out of � k-
mergers in the following way. The k inputs
are partitioned into � k sets of � k elements, and
these sets form the input to the � k � k-mergers
L1 4 L2 4 � � � 4 L � k in the left part of the figure. The
outputs of these mergers are connected to the in-
puts of � k buffers. Each buffer is a FIFO queue
that can hold 2k3 	 2 elements. Finally, the outputs
of the buffers are connected to the � k inputs of
the � k-merger R in the right part of the figure.
The output of this final � k-merger becomes the
output of the whole k-merger. The reader should
notice that the intermediate buffers are overdi-
mensioned. In fact, each buffer can hold 2k3 	 2
elements, which is twice the number k3 	 2 of el-
ements output by a � k-merger. This additional
buffer space is necessary for the correct behav-
ior of the algorithm, as will be explained below.
The base case of the recursion is a k-merger with
k 7 2, which produces k3 7 8 elements whenever
invoked.

A k-merger operates recursively in the follow-
ing way. In order to output k3 elements, the k-
merger invokes R k3 	 2 times. Before each invo-
cation, however, the k-merger fills all buffers that
are less than half full, i.e., all buffers that contain
less than k3 	 2 elements. In order to fill buffer i, the
algorithm invokes the corresponding left merger
Li once. Since Li outputs k3 	 2 elements, the buffer
contains at least k3 	 2 elements after Li finishes.

It can be proven by induction that the work
complexity of funnelsort is O(n lg n). The next the-
orem gives the cache complexity of funnelsort.

Theorem 3 Funnelsort sorts n elements incurring at
most Q(n) cache misses, where

Q(n) 7 O � 1 � (n
�

L) � 1 � logZ n � ���

Proof. See Appendix B.

This upper bound matches the lower bound
stated by the next theorem, proving that funnel-
sort is cache-optimal.

Theorem 4 The cache complexity of any sorting algo-
rithm is Q(n) 7 Ω � 1 � (n

�
L) � 1 � logZ n � � .

Proof. Aggarwal and Vitter [3] show that there
is an Ω

�
(n

�
L) logZ 	 L(n

�
Z) � bound on the number

of cache misses made by any sorting algorithm
on their “out-of-core” memory model, a bound
that extends to the ideal-cache model. The theo-
rem can be proved by applying the tall-cache as-
sumption Z 7 Ω(L2) and the trivial lower bounds
of Q(n) 7 Ω(1) and Q(n) 7 Ω(n

�
L).

5 Distribution sort
In this section, we describe another cache-
oblivious optimal sorting algorithm based on dis-
tribution sort. Like the funnelsort algorithm
from Section 4, the distribution-sorting algorithm
uses O(n lg n) work to sort n elements and it
incurs O � 1 � (n

�
L) � 1 � logZ n � � cache misses if

the cache is tall. Unlike previous cache-efficient
distribution-sorting algorithms [1, 3, 21, 28, 30],
which use sampling or other techniques to find
the partitioning elements before the distribution
step, our algorithm uses a “bucket splitting” tech-
nique to select pivots incrementally during the
distribution.

Given an array A (stored in contiguous loca-
tions) of length n, the cache-oblivious distribution
sort performs sorts A as follows:

1. Partition A into � n contiguous subarrays of
size � n. Recursively sort each subarray.

2. Distribute the sorted subarrays into q buckets
B1 4 � � � 4 Bq of size n1 4 � � � 4 nq, respectively, such
that

(a) max 	 x � x � Bi 
 
 min 	 x � x � Bi � 1 
 for
all 1 
 i � q.

(b) ni 
 2 � n for all 1 
 i 
 q.

(See below for details.)

3. Recursively sort each bucket.

4. Copy the sorted buckets to array A.

A stack-based memory allocator is used to exploit
spatial locality.
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Distribution step The goal of Step 2 is to dis-
tribute the sorted subarrays of A into q buckets
B1 4 B2 4 � � � 4 Bq. The algorithm maintains two in-
variants. First, at any time each bucket holds at
most 2 � n elements and any element in bucket Bi
is smaller than any element in bucket Bi � 1. Sec-
ond, every bucket has an associated pivot. Ini-
tially, only one empty bucket exists with pivot ∞.

The idea is to copy all elements from the sub-
arrays into the buckets while maintaining the in-
variants. We keep state information for each sub-
array and bucket. The state of a subarray consists
of the index next of the next element to be read
from the subarray and the bucket number bnum
where this element should be copied. By conven-
tion, bnum 7 ∞ if all elements in a subarray have
been copied. The state of a bucket consists of the
pivot and the number of elements currently in the
bucket.

We would like to copy the element at position
next of a subarray to bucket bnum. If this ele-
ment is greater than the pivot of bucket bnum, we
would increment bnum until we find a bucket for
which the element is smaller than the pivot. Un-
fortunately, this basic strategy has poor caching
behavior, which calls for a more complicated pro-
cedure.

The distribution step is accomplished by the re-
cursive procedure DISTRIBUTE(i 4 j 4 m) which dis-
tributes elements from the ith through (i � m �

1)th subarrays into buckets starting from B j.
Given the precondition that each subarray i 4 i �
1 4 � � � 4 i � m � 1 has its bnum � j, the execution
of DISTRIBUTE(i 4 j 4 m) enforces the postcondition
that subarrays i 4 i � 1 4 � � � 4 i � m � 1 have their
bnum � j � m. Step 2 of the distribution sort in-
vokes DISTRIBUTE(1 4 1 4 � n). The following is a re-
cursive implementation of DISTRIBUTE:

DISTRIBUTE(i 4 j 4 m)
1 if m 7 1
2 then COPYELEMS(i 4 j)
3 else DISTRIBUTE(i 4 j 4 m �

2)
4 DISTRIBUTE(i � m

�
2 4 j 4 m �

2)
5 DISTRIBUTE(i 4 j � m

�
2 4 m �

2)
6 DISTRIBUTE(i � m

�
2 4 j � m

�
2 4 m �

2)

In the base case, the procedure COPYELEMS(i 4 j)
copies all elements from subarray i that belong
to bucket j. If bucket j has more than 2 � n ele-
ments after the insertion, it can be split into two
buckets of size at least � n. For the splitting op-
eration, we use the deterministic median-finding
algorithm [12, p. 189] followed by a partition. The

median-finding algorithm uses O(m) work and
incurs O(1 � m

�
L) cache misses to find the me-

dian of an array of size m. (In our case, we have
m 7 2 � n � 1.) In addition, when a bucket splits,
all subarrays whose bnum is greater than the bnum
of the split bucket must have their bnum’s incre-
mented. The analysis of DISTRIBUTE is given by
the following lemma.

Lemma 5 Step 2 uses O(n) work, incurs O(1 � n
�

L)
cache misses, and uses O(n) stack space to distribute n
elements.

Proof. See Appendix C.

Theorem 6 Distribution sort uses O(n lgn) work
and incurs O(1 � (n

�
L) � 1 � logZ n � ) cache misses to

sort n elements.

Proof. The work done by the algorithm is given
by

W(n) 7 � nW( � n) �
q

∑
i � 1

W(ni) � O(n) 4
where each ni 
 2 � n and ∑ ni 7 n. The solution to
this recurrence is W(n) 7 O(n lgn).

The space complexity of the algorithm is given
by

S(n) 
 S(2 � n) � O(n) 4
where the O(n) term comes from Step 2. The solu-
tion to this recurrence is S(n) 7 O(n).

The cache complexity of distribution sort is de-
scribed by the recurrence

Q(n) 
 �� � O(1 � n
�

L) if n 
 � Z 4
� nQ( � n) � ∑q

i � 1 Q(ni) otherwise 4
� O(1 � n

�
L)

where � is a sufficiently small constant such that
the stack space used by a sorting problem of size� Z, including the input array, fits completely in
cache. The base case n 
 � Z arises when both
the input array A and the contiguous stack space
of size S(n) 7 O(n) fit in O(1 � n

�
L) cache lines

of the cache. In this case, the algorithm incurs
O(1 � n

�
L) cache misses to touch all involved

memory locations once. In the case where n 6� Z, the recursive calls in Steps 1 and 3 cause
Q( � n) � ∑q

i � 1 Q(ni) cache misses and O(1 � n
�

L)
is the cache complexity of Steps 2 and 4, as shown
by Lemma 5. The theorem now follows by solving
the recurrence.
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6 Other cache models
In this section we show that cache-oblivious al-
gorithms designed in the two-level ideal-cache
model can be efficiently ported to other cache
models. We show that algorithms whose com-
plexity bounds satisfy a simple regularity con-
dition (including all algorithms heretofore pre-
sented) can be ported to less-ideal caches in-
corporating least-recently-used (LRU) or first-in,
first-out (FIFO) replacement policies [18, p. 378].
We argue that optimal cache-oblivious algorithms
are also optimal for multilevel caches. Finally,
we present simulation results proving that opti-
mal cache-oblivious algorithms satisfying the reg-
ularity condition are also optimal (in expecta-
tion) in the previously studied SUMH [5, 28] and
HMM [1] models. Thus, all the algorithmic results
in this paper apply to these models, matching the
best bounds previously achieved.

6.1 Two-level models

Many researchers, such as [3, 19, 29], employ two-
level models similar to the ideal-cache model, but
without an automatic replacement strategy. In
these models, data must be moved explicitly be-
tween the the primary and secondary levels “by
hand.” We define a cache complexity bound
Q(n; Z 4 L) to be regular if

Q(n; Z 4 L) 7 O(Q(n; 2Z 4 L)) � (6)

We now show that optimal algorithms in
the ideal-cache model whose cache complexity
bounds are regular can be ported to these mod-
els to run using optimal work and incurring an
optimal expected number of cache misses.

The first lemma shows that the optimal and
omniscient replacement strategy used by an ideal
cache can be simulated efficiently by the LRU and
FIFO replacement strategies.

Lemma 7 Consider an algorithm that causes
Q

�
(n; Z 4 L) cache misses on a problem of size n using

a (Z 4 L) ideal cache. Then, the same algorithm incurs
Q(n; Z 4 L) 
 2Q

�
(n; Z

�
2 4 L) cache misses on a (Z 4 L)

cache that uses either LRU or FIFO replacement.

Proof. Sleator and Tarjan [24] have shown that
the cache misses on a (Z 4 L) cache using LRU re-
placement is (Z

�
(Z � Z

� � 1))-competitive with
optimal replacement on a (Z

� 4 L) ideal if both
caches start with an empty cache. It follows that
the number of misses on a (Z 4 L) LRU-cache is at
most twice the number of misses on a (Z

�
2 4 L)

ideal-cache. The same argument holds for FIFO
caches.

Corollary 8 For algorithms with regular cache com-
plexity bounds, the asymptotic number of cache misses
is the same for LRU, FIFO, and optimal replacement.

Since previous two-level models do not support
automatic replacement, to port a cache-oblivious
algorithms to them, we implement a LRU (or
FIFO) replacement strategy in software.

Lemma 9 A (Z 4 L) LRU-cache (or FIFO-cache) can
be maintained using O(Z) primary memory locations
such that every access to a cache line in primary mem-
ory takes O(1) expected time.

Proof. Given the address of the memory location
to be accessed, we use a 2-universal hash func-
tion [20, p. 216] to maintain a hash table of cache
lines present in the primary memory. The Z

�
L en-

tries in the hash table point to linked lists in a heap
of memory containing Z

�
L records correspond-

ing to the cache lines. The 2-universal hash func-
tion guarantees that the expected size of a chain
is O(1). All records in the heap are organized as
a doubly linked list in the LRU order (or singly
linked for FIFO). Thus, the LRU (FIFO) replace-
ment policy can be implemented in O(1) expected
time using O(Z

�
L) records of O(L) words each.

Theorem 10 An optimal cache-oblivious algorithm
with a regular cache-complexity bound can be imple-
mented optimally in expectation in two-level models
with explicit memory management.

Consequently, our cache-oblivious algorithms
for matrix multiplication, matrix transpose, FFT,
and sorting are optimal in two-level models.

6.2 Multilevel ideal caches

We now show that optimal cache-oblivious algo-
rithms also perform optimally in computers with
multiple levels of ideal caches. Moreover, Theo-
rem 10 extends to multilevel models with explicit
memory management.

The
�
(Z1 4 L1) 4 (Z2 4 L2) 4 � � � 4 (Zr 4 Lr) � ideal-cache

model consists of an arbitrarily large main mem-
ory and a hierarchy of r caches, each of which is
managed by an optimal replacement strategy. The
model assumes that the caches satisfy the inclu-
sion property [18, p. 723], which says that for i 7
1 4 2 4 � � � 4 r � 1, the values stored in cache i are also
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stored in cache i � 1. The performance of an algo-
rithm running on an input of size n is measured
by its work complexity W(n) and its cache com-
plexities Qi(n; Zi 4 Li) for each level i 7 1 4 2 4 � � � 4 r.

Theorem 11 An optimal cache-oblivious algorithm in
the ideal-cache model incurs an asymptotically optimal
number of cache misses on each level of a multilevel
cache with optimal replacement.

Proof. The theorem follows directly from the def-
inition of cache obliviousness and the optimal-
ity of the algorithm in the two-level ideal-cache
model.

Theorem 12 An optimal cache-oblivious algorithm
with a regular cache-complexity bound incurs an
asymptotically optimal number of cache misses on each
level of a multilevel cache with LRU, FIFO, or optimal
replacement.

Proof. Follows from Corollary 8 and Theorem 12.

6.3 The SUMH model

In 1990 Alpern et al. [5] presented the uniform
memory hierarchy model (UMH), a parameter-
ized model for a memory hierarchy. In the
UMH ��� ��� b(l) model, for integer constants ��4�� 6 1,
the size of the ith memory level is Zi 7 ��� 2i and
the line length is Li 7�� i. A transfer of one � l-
length line between the caches on level l and l � 1
takes � l �

b(l) time. The bandwidth function b(l)
must be nonincreasing and the processor accesses
the cache on level 1 in constant time per access.
An algorithm given for the UMH model must in-
clude a schedule that, given for a particular set of
input variables, tells exactly when each block is
moved along which of the buses between caches.
Work and cache misses are folded into one cost
measure T(n). Alpern et al. prove that an algo-
rithm that performs the optimal number of I/O’s
at all levels of the hierarchy does not necessar-
ily run in optimal time in the UMH model, since
scheduling bottlenecks can occur when all buses
are active. In the more restrictive SUMH model
[28], however, only one bus is active at a time.
Consequently, we can prove that optimal cache-
oblivious algorithms run in optimal expected time
in the SUMH model.

Lemma 13 A cache-oblivious algorithm with W(n)
work and Q(n; Z 4 L) cache misses on a (Z 4 L)-ideal

cache can be executed in the SUMH �	� ��� b(l) model in ex-
pected time

T(n) 7 O
�
W(n) �

r � 1

∑
i � 1

� i

b(i)
Q(n;Θ(Zi) 4 Li) � 4

where Zi 7 ��� 2i, Li 7
� i, and Zr is big enough to hold
all elements used during the execution of the algorithm.

Proof. Use the memory at the ith level as a cache
of size Zi 7 ��� 2i with line length Li 7
� i and man-
age it with software LRU described in Lemma 9.
The rth level is the main memory, which is di-
rect mapped and not organized by the software
LRU mechanism. An LRU-cache of size Θ(Zi)
can be simulated by the ith level, since it has
size Zi. Thus, the number of cache misses at level
i is 2Q(n;Θ(Zi) 4 Li), and each takes � i �

b(i) time.
Since only one memory movement happens at
any point in time, and there are O(W(n)) accesses
to level 1, the lemma follows by summing the in-
dividual costs.

Lemma 14 Consider a cache-oblivious algorithm
whose work on a problem of size n is lower-bounded
by W

�
(n) and whose cache complexity is lower-

bounded by Q
�
(n; Z 4 L) on an (Z 4 L) ideal-cache. Then,

no matter how data movement is implemented in
SUMH ��� ��� b(l), the time taken on a problem of size n
is at least

T(n) 7 Ω
�
W

�
(n) �

r

∑
i � 1

� i

b(i)
Q

�
(n 4 Θ(Z j) 4 Li) � 4

where Zi 7 ��� 2i, Li 7�� i and Zr is big enough to hold
all elements used during the execution of the algorithm.

Proof. The optimal scheduling of the data move-
ments does not need to obey the inclusion prop-
erty, and thus the number of ith-level cache misses
is at least as large as for an ideal cache of size
∑i

j � 1 Zi 7 O(Zi). Since Q
�
(n 4 Z 4 L) lower-bounds

the cache misses on a cache of size Z, at least
Q

�
(n 4 Θ(Zi) 4 Li) data movements occur at level i,

each of which takes � i �
b(i) time. Since only one

movement can occur at a time, the total cost is the
maximum of the work and the sum of the costs at
all the levels, which is within a factor of 2 of their
sum.

Theorem 15 A cache-oblivious algorithm that is op-
timal in the ideal-cache model and whose cache-
complexity is regular can be executed optimal expected
time in the SUMH ��� ��� b(l) model.

Proof. The theorem follows directly from regu-
larity and Lemmas 13 and 14.
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6.4 The HMM model

Aggarwal, Alpern, Chandra and Snir [1] pro-
posed the hierarchical memory model (HMM) in
which an access to location x takes f (x) time. The
authors assume that f is a monotonically non-
decreasing function, usually of the form

�
log x �

or
�
x
� � . The final paper will show that opti-

mal cache-oblivious algorithms run in optimal ex-
pected time in the HMM model.

7 Related work
In this section, we discuss the origin of the notion
of cache-obliviousness. We also give an overview
of other hierarchical memory models.

Our research group at MIT noticed as far back
as 1994 that divide-and-conquer matrix multi-
plication was a cache-optimal algorithm that re-
quired no tuning, but we did not adopt the
term “cache-oblivious” until 1997. This matrix-
multiplication algorithm, as well as a cache-
oblivious algorithm for LU-decomposition with-
out pivoting, eventually appeared in [8]. Shortly
after leaving our research group, Toledo [26] inde-
pendently proposed a cache-oblivious algorithm
for LU-decomposition, but with pivoting. For
n � n matrices, Toledo’s algorithm uses Θ(n3)
work and incurs Θ(1 � n2 �

L � n3 �
L � Z) cache

misses. More recently, our group has produced
an FFT library called FFTW [16], which in its
most recent incarnation [15], employs a register-
allocation and scheduling algorithm inspired by
our cache-oblivious FFT algorithm. The general
idea that divide-and-conquer enhances memory
locality has been known for a long time [23].

Previous theoretical work on understanding hi-
erarchical memories and the I/O-complexity of
algorithms has been studied in cache-aware mod-
els lacking an automatic replacement strategy.
Hong and Kung [19] use the red-blue pebble game
to prove lower bounds on the I/O-complexity of
matrix multiplication, FFT, and other problems.
The red-blue pebble game models temporal lo-
cality using two levels of memory. The model
was extended by Savage [22] for deeper memory
hierarchies. Aggarwal and Vitter [3] introduced
spatial locality and investigated a two-level mem-
ory in which a block of P contiguous items can
be transferred in one step. They obtained tight
bounds for matrix multiplication, FFT, sorting,
and other problems. The hierarchical memory
model (HMM) by Aggarwal et al. [1] treats mem-
ory as a linear array, where the cost of an access

to element at location x is given by a cost func-
tion f (x). The BT model [2] extends HMM to sup-
port block transfers. The UMH model by Alpern
et al. [5] is a multilevel model that allows I/O at
different levels to proceed in parallel. Vitter and
Shriver introduce parallelism, and they give algo-
rithms for matrix multiplication, FFT, sorting, and
other problems in both a two-level model [29] and
several parallel hierarchical memory models [30].
Vitter [27] provides a comprehensive survey of
external-memory algorithms.

8 Conclusion
[All is well that ends]
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Appendix

A Analysis of matrix transposition
Lemma 1 The cache-oblivious matrix-transpose algo-
rithm involves O(mn) work and incurs O(1 � mn

�
L)

cache misses for an m � n matrix.

Proof. It is clear that the algorithm does O(mn)
work. For the cache analysis, let Q(m 4 n) be the
cache complexity of transposing a m � n matrix.
We assume that the matrices are stored in row-
major order, the column-major case having a sim-
ilar analysis.

Let � be a constant sufficiently small such that
two submatrices of size m � n and n � m, where
max 	 m 4 n 
 
 � L, fit completely in the cache even
if each row is stored in a different cache line. We
distinguish the following three cases cases.

Case I: max 	 m 4 n 
 
 � L
Both the matrices fit in O(1) � 2mn

�
L lines.

From the choice of � , the number of lines re-
quired is at most Z

�
L. Therefore Q(m 4 n) 7

O(1 � mn
�

L).
Case II: m 
 � L � n OR n 
 � L � m

For this case, assume first that m 
 � L �
n. The transposition algorithm divides the
greater dimension n by 2 and performs di-
vide and conquer. At some point in the re-
cursion, n is in the range � L

�
2 
 n 
 � L, and

the whole problem fits in cache. Because the
layout is row-major, at this point the input
array has n rows, m columns, and it is laid
out in contiguous locations, thus requiring at
most O(1 � nm

�
L) cache misses to be read.

The output array consists of nm elements in
m rows, where in the worst case every row
lies on a different cache line. Consequently,
we incur at most O(m � nm

�
L) for writing the

output array. Since n � � L
�
2, the total cache

complexity for this base case is O(1 � m).
These observations yield the recurrence

Q(m 4 n) 
�
O(1 � m) if n � [ � L

�
2 4 � L] 4

2Q(m 4 n �
2) � O(1) otherwise 4

whose solution is Q(m 4 n) 7 O(1 � mn
�

L).
The case n 
 � L � m is analogous.

Case III: m 4 n 6 � L
Like in Case II, at some point in the recursion
both n and m are in the range [ � L

�
2 4 � L]. The

whole problem fits into cache and it can be

solved with at most O(m � n � mn
�

L) cache
misses.
The cache complexity thus satisfies the recur-
rence

Q(m 4 n)


 �� � O(m � n � mn
�

L) if m 4 n � [ � L
�
2 4 � L] 4

2Q(m
�
2 4 n) � O(1) if m � n 4

2Q(m 4 n �
2) � O(1) otherwise 4

whose solution is Q(m 4 n) 7 O(1 � mn
�

L).

B Analysis of funnel sort
In this appendix, we analyze the cache complex-
ity of funnelsort. The goal of the analysis is to
show that funnelsort on n elements requires at
most Q(n) cache misses, where

Q(n) 7 O � 1 � (n
�

L) � 1 � logZ n � � 4
provided that Z 7 Ω(L2). [Note to the program
committee: we believe that this hypothesis can be
weakened to Z 7 Ω(L1 ��� ) for all �-6 0. If correct,
this result will appear in the final paper.]

In order to prove this result, we need three aux-
iliary lemmas. The first lemma bounds the space
required by a k-merger.

Lemma 16 A k-merger can be laid out in O(k2) con-
tiguous memory locations.

Proof. A k-merger requires O(k2) memory loca-
tions for the buffers, plus the space required by
the � k-mergers. The space S(k) thus satisfies the
recurrence

S(k) 
 ( � k � 1)S( � k) � O(k2) 4
whose solution is S(k) 7 O(k2).

In order to achieve the bound on Q(n), it is im-
portant that the buffers in a k-merger be main-
tained as circular queues of size k. This require-
ment guarantees that we can manage the queue
cache-efficiently, in the sense stated by the next
lemma.

Lemma 17 Performing r insert and remove opera-
tions on a circular queue causes in O(1 � r

�
L) cache

misses if two cache lines are available for the buffer.

Proof. Associate the two cache lines to the head
and tail of the circular queue. If a new cache
line is read during a insert (delete) operation, the
next L � 1 insert (delete) operations do not cause a
cache miss. The result follows.

The next lemma bounds the number of cache
misses QM incurred by a k-merger.
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Lemma 18 If Z 7 Ω(L2), then a k-merger operates
with at most QM(k) cache misses, where

QM(k) 7 O � 1 � k � k3 �
L � k3 logZ k

�
L � �

Proof. There are two cases: either k � � � Z or k 6� � Z, where � is a sufficiently small constant.
Assume first that k � � � Z. By Lemma 16, the

data structure associated with the k-merger re-
quires at most O(k2) 7 O(Z) contiguous memory
locations, and therefore it fits into cache. The k-
merger has k input queues, from which it loads
O(k3) elements. Let ri be the number of elements
extracted from the i-th input queue. Since k �� � Z and L 7 O( � Z), there are at least Z

�
L 7

Ω(k) cache lines available for the input buffers.
Lemma 17 applies, whence the total number of
cache misses for accessing the input queues is

k

∑
i � 1

O(1 � ri
�

L) 7 O(k � k3 �
L) �

Similarly by Lemma 16, the cache complexity of
writing the output queue is at most O(1 � k3 �

L).
Finally, the algorithm incurs at most O(1 � k2 �

L)
cache misses for touching its internal data struc-
tures. The total cache complexity is therefore
QM(k) 7 O � 1 � k � k3 �

L � , completing the proof of
the first case.

Assume now that k 6 � � Z. In this second case,
we prove by induction on k that, whenever k 6� � Z, we have

QM(k) 
 ck3 logZ k
�

L � A(k) 4 (7)

where A(k) 7 k(1 � 2c logZ k
�

L) is a o(k3) term. This
particular value of A(k) will be justified later in the
analysis.

The base case of the induction consists of values
of k such that � Z1 	 4 � k � � � Z. (It is not sufficient
to just consider k 7 Θ( � Z), since k can become
as small as Θ(Z1 	 4) in the recursive calls.) The
analysis of the first case applies, yielding QM(k) 7
O � 1 � k � k3 �

L � . Because k2 6 � � Z 7 Ω(L) and
k 7 Ω(1), the last term dominates, and QM(k) 7
O � k3 �

L � holds. Consequently, a big enough value
of c can be found that satisfies Inequality (7).

For the inductive case, let k 6 � � Z. The k-
merger invokes the � k-mergers recursively. Since� Z1 	 4 � � k � k, the inductive hypothesis can
be used to bound the number QM( � k) of cache
misses incurred by the submergers. The “right”
merger R is invoked exactly k3 	 2 times. The to-
tal number l of invocations of “left” mergers is

bounded by l � k3 	 2 � 2 � k. To see why, con-
sider that every invocation of a left merger puts
k3 	 2 elements into some buffer. Since k3 elements
are output and the buffer space is 2k2, the bound
l � k3 	 2 � 2 � k follows.

Before invoking R, the algorithm must check
every buffer to see whether it is empty. One
such check requires at most � k cache misses, since
there are � k buffers. This check is repeated ex-
actly k3 	 2 times, leading to at most k2 cache misses
for all checks.

These considerations lead to the recurrence

QM(k) 
 �
2k3 	 2 � 2 � k � QM( � k) � k2 �

Application of the inductive hypothesis yields the
desired bound Inequality (7), as follows.

QM(k) 
 �
2k3 	 2 � 2 � k � QM( � k) � k2


 2
�
k3 	 2 � � k �

�
ck3 	 2 logZ k

2L
� A( � k) � � k2


 ck3 logZ k
�

L � k2 � 1 � c logZ k
�

L �
�

�
2k3 	 2 � 2 � k � A( � k) �

If A(k) 7 k(1 � 2c logZ k
�

L) (for example) Inequal-
ity (7) follows.

Theorem 3 If Z 7 Ω(L2), then funnelsort sorts n el-
ements with at most Q(n) cache misses, where

Q(n) 7 O � 1 � (n
�

L) � 1 � logZ n � � �
Proof. If n � � Z for a small enough constant � ,
then the algorithm fits into cache. To see why, ob-
serve that only one k-merger is active at any time.
The biggest k-merger is the top-level n1 	 3-merger,
which requires O(n2 	 3) � O(n) space. The algo-
rithm thus can operate in O(1 � n

�
L) cache misses.

If N 6 � Z, we have the recurrence

Q(n) 7 n1 	 3Q(n2 	 3) � QM(n1 	 3) �
By Lemma 18, we have QM(n1 	 3) 7
O � 1 � n1 	 3 � n

�
L � n logZ n

�
L � .

With the hypothesis Z 7 Ω(L2), we have n
�

L 7
Ω(n1 	 3). Moreover, we also have n1 	 3 7 Ω(1)
and lg n 7 Ω(lg Z). Consequently, QM(n1 	 3) 7
O � n logZ n

�
L � holds, and the recurrence simpli-

fies to

Q(n) 7 n1 	 3Q(n2 	 3) � O � n logZ n
�

L � �
The result follows by induction on n.

12



C Analysis of Distribution Sort
This appendix contains the proof of Lemma 5,
which is used in Section 5.

Lemma 19 The median of n elements can be found
cache-obliviously using O(n) work and incurring
O(1 � n

�
L) cache misses.

Proof. See [12, p. 189] for the linear-time median
finding algorithm and the work analysis. The
cache complexity is given by the same recurrence
as the work complexity with a different base case.

Q(m) 7
�� � O(1 � m

�
L) if m 
 � Z 4

Q(
�
m

�
5 � ) � Q(7m

�
10 � 6) otherwise 4

� O(1 � m
�

L)

where � is a sufficiently small constant. The result
follows.

Lemma 5 The distribute step uses O(n) work, incurs
O(1 � n

�
L) cache misses, and uses O(n) stack space to

distribute n elements.

Proof. In order to simplify the analysis of the
work used by DISTRIBUTE, assume that COPY-
ELEMS uses O(1) work for procedural overhead.
We will account for the work due to copying el-
ements and splitting of buckets separately. The
work of DISTRIBUTE is described by the recur-
rence

T(c) 7 4T(c
�
2) � O(1) �

It follows that T(c) 7 O(c2), where c 7 � n initially.
The work due to copying elements is also O(n).

The total number of bucket splits is at most
� n. To see why, observe that there are at most
� n buckets at the end of the distribution step,
since each bucket contains at least � n elements.
Each split operation involves O( � n) work and so
the net contribution to the work is O(n). Thus,
the total work used by DISTRIBUTE is W(n) 7
O(T( � n)) � O(n) � O(n) 7 O(n).

For the cache analysis, we distinguish two
cases. Let � be a sufficiently small constant such
that the stack space used fits into cache.

Case I: n 
 � Z
The input and the auxiliary space of size
O(n) fit into cache using O(1 � n

�
L) cache

lines. Consequently, the cache complexity is
O(1 � n

�
L).

Case II: n 6 � Z
Let R(c 4 m) denote the cache misses incurred
by an invocation of DISTRIBUTE(a 4 b 4 c) that
copies m elements from subarrays to buckets.

We again account for the splitting of buckets
separately. We first prove that R satisfies the
following recurrence:

R(c 4 m) 
�
O(L � m

�
L) if c 
 � L 4

∑1
�

i
�

4 R(c
�
2 4 mi) otherwise 4

(8)

where ∑1
�

i
�

4 mi 7 m.
First, consider the base case c 
 � L. An in-
vocation of DISTRIBUTE(a 4 b 4 c) operates with
c subarrays and c buckets. Since there are
Ω(L) cache lines, the cache can hold all
the auxiliary storage involved and the cur-
rently accessed element in each subarray and
bucket. In this case there are O(L � m

�
L)

cache misses. O(c) 7 O(L) cache misses are
due to the initial access to each subarray and
bucket. O(1 � m

�
L) is the cache complexity

of copying the m elements from contiguous
to contiguous locations. This completes the
proof of the base case. The recursive case,
when c 6 � L, follows immediately from the
algorithm. The solution for Equation (8) is
R(c 4 m) 7 O(L � c2 �

L � m
�

L).
We still need to account for the cache misses
caused by the splitting of buckets. Each split
causes O(1 � � n

�
L) cache misses due to me-

dian finding (Lemma 19) and partitioning of
� n contiguous elements. Additional O(1 �
� n

�
L) misses are incurred by restoring the

cache. As proven in the work analysis, there
are at most � n split operations.
By adding R( � n 4 n) to the split complexity,
we conclude that the total cache complexity
of the distribution step is O(L � n

�
L � � n(1 �

� n
�

L)) 7 O(n
�

L).
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