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Instruction-cache misses account for up to 40% of execution time in Online Transaction Processing
(OLTP) database workloads. In contrast to data cache misses, instruction misses cannot be overlapped
with out-of-order execution. Chip design limitations do not allow increases in the size or associativity of
instruction caches that would help reduce misses. On the contrary, the effective instruction cache size is
expected to further decrease with the adoption of Multicore and Multithreading chip designs (multiple on-
chip processor cores and multiple simultaneous threads per core). Different concurrent database threads,
however, execute similar instruction sequences over their lifetime, too long to be captured and exploited in
hardware. The challenge, from a software designer's point of view, is to identify and exploit common code
paths across threads executing arbitrary operations, thereby eliminating extraneous instruction misses.

In this article, we describe Synchronized Threads through Explicit Processor Scheduling (STEPS), a
methodology and tool to increase instruction locality in database servers executing transaction processing
workloads. STEPS works at two levels to increase reusability of instructions brought in the cache. At a
higher level, synchronization barriers form teams of threads that execute the same system component.
Within a team, STEPS schedules special fast context-switches at very fine granularity to reuse sets of
instructions across team members. To find points in the code where context-switches should occur, we
develop autoSTEPS, a code profiling tool that runs directly on the DBMS binary. STEPS can minimize
both capacity and conflict instruction cache misses for arbitrarily long code paths.

We demonstrate the effectiveness of our approach on Shore, a research prototype database system
shown to be governed by similar bottlenecks as commercial systems. Using microbenchmarks on real and
simulated processors, we observe that STEPS eliminates up to 96% of instruction-cache misses for each
additional team thread and at the same time eliminates up to 64% of mispredicted branches by providing a
repetitive execution pattern to the processor. When performing a full-system evaluation on real hardware
using TPC-C, the industry-standard transactional benchmark, STEPS eliminates two thirds of instruction-
cache misses and provides up to 1.4 overall speedup.
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1.    INTRODUCTION
Good instruction-cache performance is crucial in modern Database Management System
(DBMS) installations running Online Transaction Processing (OLTP) applications. Exam-
ples of OLTP applications are: banking, e-commerce, reservation systems, inventory man-
agement. A common requirement is the ability of the DBMS software to execute
efficiently multiple concurrent transactions which are typically short in duration. In large
scale installations, server software leverages increasingly higher-capacity main memories
and highly parallel storage subsystems to efficiently hide I/O latencies. As a result, DBMS
software performance is largely determined by the ability of the processors to continu-
ously execute instructions without stalling. Recent studies show that between 22% and
41% of the execution time in TPC-C, the prevailing OLTP benchmark, is attributed to
instruction-cache misses [Shao et al. 2005; Keeton et al. 1998;  Barroso et al. 1998].

Over the past few years, a wide body of research has proposed techniques to identify
and reduce CPU performance bottlenecks in database workloads [Shatdal et al. 1994;
Graefe and Larson 2001]. Since memory access times improve much slower than proces-
sor speed, performance is bound by instruction and data cache misses that cause expensive
main-memory accesses [Ranganathan et al. 1998; Ailamaki et al. 1999]. Related research
efforts propose hardware and compiler techniques to address instruction-cache perfor-
mance [Ranganathan et al. 1998; Ramirez et al. 2001]. The focus, however, is on single-
thread execution (single transaction). While the proposed techniques can enhance instruc-
tion-cache performance by increasing spatial locality (utilization of instructions contained
in a cache block), they cannot increase temporal locality (reusability of an entire instruc-
tion-cache block) since the latter is a direct function of the application nature. A recent
Oracle study reports a 556KB OLTP code footprint [Lo et al. 1998]; with modern CPUs
having 16-64KB instruction cache size (L1-I cache), OLTP code paths are too long to
achieve cache-residency.

While hardware or compiler techniques cannot increase instruction reusability (tempo-
ral locality) within a single execution thread, an appropriate software mechanism can
potentially increase instruction reusability by exploiting common instructions in the cache
across different concurrent threads. The payoff in such a software approach can be large,
since DBMS software typically handles multiple concurrent transactions by assigning
them to different threads, and, at the same time, complementary to any hardware/compiler
technique. To illustrate how this idea might work, consider a thread scheduling mecha-
nism that, as a first step, identifies ten concurrent threads that are about to execute the
same function call, the code path of which is far larger than the instruction cache. Each
thread execution will yield a default number of instruction misses. If, however, we per-
fectly reuse the instructions one thread brings gradually in the cache, across all ten
threads, we can achieve a 90% overall reduction in instruction cache misses. That is, in a
group of threads, we could potentially turn one thread's instruction cache misses to cache
hits for all the other threads. Applying this idea, however, to a DBMS consisting of mil-
lions lines of code, executing different types of transactions, each with different require-
ments and unpredictable execution sequences (due to lock requests, frequent critical
sections, I/O requests) is a challenging task.
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This article reviews STEPS (Synchronized Threads through Explicit Processor Sched-
uling) [Harizopoulos and Ailamaki 2004], a methodology and its application for increas-
ing instruction locality in database servers executing transaction processing workloads.
STEPS works at two levels to increase reusability of instructions brought in the cache. At
a higher level, synchronization barriers form teams of threads that execute the same sys-
tem component. Within a team, STEPS schedules special, fast context-switches at very
fine granularity, to reuse sets of instructions across team members. Both team formation
and fine-grain context-switching are low-overhead software mechanisms, designed to co-
exist with all DBMS internal mechanisms (locking, logging, deadlock detection, buffer
pool manager, I/O subsystem), and flexible enough to work with any arbitrary OLTP
workload. STEPS requires only few code changes, targeted at the thread package.

In this article we also introduce and evaluate autoSTEPS, a code profiling tool that
automates the application of STEPS for any database system. autoSTEPS runs directly
on the DBMS software binary and can find the points in the DBMS core code where con-
text-switches should occur, thus eliminating the need to examine and modify DBMS
source code. Moreover, autoSTEPS does not depend on the cache characteristics of the
machine used for profiling, and therefore, it can be configured to produce output for any
arbitrary targeted cache architecture.

We demonstrate the effectiveness of our approach on Shore [Carey et al. 1994], a
research prototype database system shown to be governed by similar bottlenecks as com-
mercial systems [Ailamaki et al. 2001B]. First, using microbenchmarks on real and simu-
lated processors, we show that STEPS eliminates up to 96% of instruction-cache misses
for each additional team thread, and at the same time eliminates up to 64% of mispredicted
branches by providing a repetitive execution pattern to the CPU. When performing a full-
system evaluation, on real hardware, with TPC-C, the industry-standard transactional
benchmark, STEPS eliminates two thirds of instruction-cache misses and provides up to
1.4 overall speedup. To the best of our knowledge, this is the first software approach to
provide explicit thread scheduling for improving instruction cache performance. The con-
tributions of the article are:

• A novel technique that enables thread scheduling at very fine granularity to reuse
instructions in the cache across concurrent threads.

• A tool to automatically find the points in the code that the instruction cache fills up.

• The implementation and evaluation of the presented techniques inside a research pro-
totype database system running a full-blown multi-user transactional benchmark on
real hardware.

The rest of the article is organized as follows. Section 2 contains background informa-
tion on instruction caches and discusses trends in processor design along with related
research efforts. Section 3 introduces STEPS and evaluates the basic implementation
through microbenchmarks on three processors (AthlonXP, Pentium III, and Pentium 4)
and on several different simulated cache configurations. Section 4 describes the full
STEPS implementation, capable of handling any arbitrary OLTP workload and presents
TPC-C results. Section 5 presents autoSTEPS and discusses applicability to commercial



4 •  Stavros Harizopoulos and Anastassia Ailamaki

DBMS software. The last section of the article concludes and discusses how STEPS can
be extended to apply to current and upcoming multithreaded processor designs.

2.    BACKGROUND AND RELATED WORK

To bridge the CPU/memory performance gap [Hennessy and Patterson 1996], today’s pro-
cessors employ a hierarchy of caches that maintain recently referenced instructions and
data close to the processor. Figure 1 shows an example of an instruction cache organiza-
tion and explains the difference between capacity and conflict cache misses. Recent pro-
cessors — e.g., IBM’s Power5 — have up to three cache levels. At each hierarchy level,
the corresponding cache trades off lookup speed for size. For example, level-one (L1)
caches at the highest level are small (e.g., 16KB-64KB), but operate at (or close to) pro-
cessor speed. In contrast, lookup in level-two (L2) caches typically incurs up to an order
of magnitude longer time because they are several times larger than the L1 caches (e.g.,
512K-8MB). L2 lookup, however, is still several orders of magnitude faster than main
memory access (which typically takes 300-400 cycles). Therefore, the effectiveness of
cache hierarchy is extremely important for performance.

2.1    The instruction cache problem
In contrast to data cache accesses, instruction cache accesses are serialized and cannot be
overlapped. Instruction cache misses prevent the flow of instructions through the proces-
sor and directly affect performance. To maximize first-level instruction cache utilization
and minimize stalls, application code should have few branches (exhibiting high spatial
locality), a repeating pattern when deciding whether to follow a branch (yielding low
branch misprediction rate), and most importantly, the “working set” code footprint should
fit in the L1-I cache. Unfortunately, OLTP workloads exhibit the exact opposite behavior
[Keeton et al. 1998]. A study on Oracle reports a 556KB OLTP code footprint [Lo et al.
1998]. With modern CPUs having 16-64KB L1-I cache sizes, OLTP code paths are too
long to achieve cache-residency. Moreover, the importance of L1-I cache stalls increases
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with larger L2 caches, as shown in Figure 2a (stalls shown as non-overlapping compo-
nents; I-cache stalls are actually 41% of the total execution time [Keeton et al. 1998]). As
a large (or highly associative) L1-I cache may adversely impact the CPU’s clock fre-
quency, chip designers cannot increase L1-I sizes (and/or associativity) despite the growth
in secondary caches, as shown in Figure 2b.

Current chip design trends towards improving process performance are leading to
thread-parallel architectures, where multiple threads or processes can run simultaneously
on a single chip via multiple on-chip processor cores (chip multiprocessors — CMP) and/
or multiple simultaneous threads per processor core (simultaneous multithreading —

SMT)1. To be able to fit more cores on a single chip without overheating, and also save
time in hardware verification, chip designers are expected to use simpler, “lean” cores as
building blocks (this is exactly the philosophy behind Sun’s UltraSPARC T1 which uses
up to 8 cores on a single chip with 4 threads per core). The instruction cache size of these
cores is not expected to grow (for example, the UltraSPARC T1 features a 16KB L1-I
cache, which is the same size as in the first UltraSPARC chip, introduced 10 years ago).
Moreover, SMT chips already operate on a reduced effective instruction cache size, since
the instruction cache is shared among all simultaneous threads. In future processors, the
combined effect of larger L2 cache sizes and small (or shared) L1-I caches will make
instruction cache stalls the key performance bottleneck.

2.2    Database workloads on modern processors
Prior research [Maynard et al. 1994] indicates that adverse memory access patterns in
database workloads result in poor cache locality and overall performance. Recent studies

1. As of the time this article is written, all major chip manufacturers (Sun, IBM, Intel,
AMD) have made available CMP and/or SMT designs (Intel’s Pentium 4 currently
implements a 2-way SMT design which is marketed as Hyperthreading design). 
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of OLTP workloads and DBMS performance on modern processors [Ailamaki et al. 1999;
Keeton et al. 1998] narrow the primary memory-related bottlenecks to L1 instruction and
L2 data cache misses. More specifically, Keeton et al. measure an instruction-related stall
component of 41% of the total execution time for Informix running TPC-C on a Pentium-
Pro. When running transactional (TPC-B and TPC-C) and decision-support (TPC-H)
benchmarks on top of Oracle on Alpha processors, instruction stalls account for 45% and
30% of the execution time, respectively [Barroso et al. 1998; Stets et al. 2002]. A recent
study of DB2 7.2 running TPC-C on Pentium III [Shao et al. 2005] attributes 22% of the
execution time to instruction stalls.

Unfortunately, unlike DSS workloads, transaction processing involves a large code
footprint and exhibits irregular data access patterns due to the long and complex code
paths of transaction execution. In addition, concurrent requests reduce the effectiveness of
single-query optimizations [Jayasimha and Kumar 1999]. Finally, OLTP instruction
streams have strong data dependencies that limit instruction-level parallelism opportuni-
ties, and irregular program control flow that undermines built-in pipeline branch predic-
tion mechanisms and increases instruction stall time.

2.3    Techniques to address L1-I cache stalls
In the last decade, research on cache-conscious database systems has primarily addressed
data cache performance [Shatdal et al. 1994; Chilimbi et al. 2000;  Graefe and Larson
2001]. L1-I cache misses, however, and misses occurring when concurrent threads replace
each other’s working sets [Rosenblum et al. 1995], have received little attention by the
database community. Two recent studies [Padmanabhan et al. 2001; Zhou and Ross 2004]
propose increasing the number of tuples processed by each relational operator, improving
instruction locality when running single-query-at-a-time DSS workloads. Unfortunately,
similar techniques cannot apply to OLTP workloads because transactions typically do not
form long pipelines of database operators.

Instruction locality can be improved by altering the binary code layout so that run-time
code paths are as conflict-free and stored as contiguously as possible [Romer et al. 1997;
Ramirez et al. 2001]. In the example of Figure 1 one such optimization would be to place
procedure A’s code on address 20, so that it does not conflict with the for-loop code. Such
compiler optimizations are based on static profile data collected when executing a certain
targeted workload and therefore, they may hurt performance when executing other work-
loads. Moreover, such techniques cannot satisfy all conflicting code paths from all differ-
ent execution threads.

A complementary approach is instruction prefetching in the hardware [Chen et al.
1997]. Call graph prefetching [Annavaram et al. 2003] collects information about the
sequence of database functions calls and prefetches the function most likely to be called
next. The success of such a scheme depends on the predictability of function call
sequences. Unfortunately, OLTP workloads exhibit highly unpredictable instruction
streams that challenge even the most sophisticated prediction mechanisms (the evaluation
of call graph prefetching is done through relatively simple DSS queries [Annavaram et al.
2003]).
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3.    STEPS: INTRODUCING CACHE-RESIDENT CODE

All OLTP transactions, regardless of the specific actions they perform, execute common
database mechanisms (i.e., index traversing, buffer pool manager, lock manager, logging).
In addition, OLTP typically processes hundreds of requests concurrently (the top perform-
ing system in the TPC-C benchmark suite supports over one million users and handles

hundreds of concurrent client connections1). High-performance disk subsystems and high-
concurrency locking protocols ensure that, at any time, there are multiple threads in the
CPU ready-to-run queue.

We propose to exploit the characteristics of OLTP code by reusing instructions in the
cache across a group of transactions, effectively turning an arbitrarily large OLTP code
footprint into nearly cache-resident code. We synchronize transaction groups executing
common code fragments, improving performance by exploiting the high degree of OLTP
concurrency. The rest of this section describes the basic implementation of STEPS, and
details its behavior using transactional microbenchmarks.

3.1    Basic implementation of STEPS
Transactions typically invoke a basic set of operations: begin, commit, index fetch, scan,
update, insert, and delete. Each of those operations involves several DBMS functions and
can easily overwhelm the L1-I cache of modern processors. Experimenting with the Shore
database storage manager [Carey et al. 1994] on a CPU with 64KB L1-I cache, we find
that even repeated execution of a single operation always incurs additional L1-I misses.
Suppose that N transactions, each being carried out by a thread, perform an index fetch
(traverse a B-tree, lock a record, and read it). For now, we assume that transactions exe-
cute uninterrupted (all pages are in main memory and locks are granted immediately). A
DBMS would execute one index fetch after another, incurring more L1-I cache misses
with each transaction execution. We propose to reuse the instructions one transaction
brings in the cache, thereby eliminating misses for the remaining N-1 transactions.

As the code path is almost the same for the action that all N transactions are about to
perform (except for minor, key-value processing), we follow the code execution for one
transaction and find the point at which the L1-I cache starts evicting previously-fetched
instructions. At that point STEPS context-switches the CPU to another thread. Once that
thread reaches the same point in the code as the first, we switch to the next. The Nth thread
switches back to the first one, which fills the cache with new instructions. Since the last N-
1 threads execute the same instructions as the first, they incur significantly fewer L1-I
misses (which are all conflict misses, since each code fragment’s footprint is smaller than
the L1-I cache).

Figures 3a and 3b illustrate the scenario mentioned above for two threads. Using
STEPS, one transaction paves the L1-I cache, incurring all compulsory misses. A second,
similar transaction follows closely, finding all the instructions it needs in the cache. Note
that, throughout this section, we consider only function calls made to the DBMS by a
transaction, and not the user code surrounding those calls. Further, we assume that all

1. Transaction Processing Performance Council. http://www.tpc.org
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threads are already synchronized and are about to execute the same function call (such as
retrieving or inserting a tuple). This way, in this section, we can focus on evaluating the
basic STEPS implementation. Later, in Section 4, we remove the above-mentioned
assumptions, and describe the full implementation, capable of handling arbitrary transac-
tional workloads (including arbitrary user code) in full-system operation.

Next, we describe (a) how to minimize the context-switch code size, and, (b) where to
insert the context-switch calls in the DBMS source code.

3.2    Fast, efficient context-switching
Switching execution from one thread (or process) to another involves updating OS and
DBMS software structures, as well as updating CPU registers. Thread switching is typi-
cally less costly than process switching. Most commercial DBMS involve a light-weight
mechanism to pass on CPU control (Shore uses user-level threads). The code of typical
context-switching mechanisms, however, occupies a significant portion of the L1-I cache
and takes hundreds of processor cycles to run. Shore’s context-switch, for instance, occu-
pies half of Pentium III’s 16KB L1-I cache.

To minimize the overhead of context-switching among STEPS threads, we employ a
well-known design guideline: we make the common case fast. The common case here is
switching between transactions that are already synchronized and ready to execute the
same DBMS function call. Our fast context-switch mechanism executes only the core
code and updates only CPU state, ignoring thread-specific software structures (such as the
ready-thread queue) until they must be updated. We describe when we update those struc-
tures, along with how transactions are synchronized in the first place, in Section 4.

The absolute minimum code needed to perform a context-switch on a IA-32 architec-
ture — save/restore CPU registers and switch the base and stack pointers — is 48 bytes.
After adding the code to handle scheduling between different STEPS threads, we derive a
context-switching code with 76 bytes footprint. Therefore, it only takes three 32-byte (or
two 64-byte) cache blocks to store the context-switch code. One optimization that several
commercial thread packages (e.g., Linux threads) make is to skip updating the floating
point registers until they are actually used. For a subset of the microbenchmarks we apply
a similar optimization using a flag in the core context-switch code.

Figure 3. (a) As the instruction cache cannot
fit the entire code, when the CPU switches
(dotted line) to thread B, this incurs the same
number of misses.

Figure 3. (b) By “breaking” the code into
three pieces that fit in the cache, and switch-
ing back and forth between the two threads,
thread B finds all instructions in the cache.
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3.3    Finding context-switching points in Shore
So far, we have described a fast context-switching function that can be used among
threads in a controlled setting (threads are already synchronized and ready to execute the
same DBMS function call). The next step is to find appropriate places in the DBMS
source code to insert a call to the context-switch function (CTX). These places would cor-
respond to the points where the instruction cache fills up during the execution of a single
thread (see also Figure 3b). To find these points in the source code, we perform a manual,
test-and-try search on all transactional operations in Shore (begin, commit, index fetch,
scan, update, insert, and delete). Although our manual search was not particularly lengthy
(a few days for one person), we describe later (Section 5) a tool that automates this proce-
dure and that can work with arbitrary code bases.

Given a specific transactional DBMS function call (for example, index-fetch), the man-
ual search proceeds as follows. We create a simple, synthetic database and create two
threads that only perform an index-fetch. We pick a random point in the source code of

index fetch and, using hardware CPU counters1 (available on most processors), we mea-
sure the L1-I cache misses for a single thread executing the code fragment from the begin-
ning of index-fetch up to the point we picked. We then insert in that point a candidate CTX
call to the second thread and measure the total number of L1-I misses for executing the
code fragment twice (once per thread). If the increase in L1-I misses for the second thread
is small (< 5%), we pick another point further on in the flow of code and repeat the mea-
surements; otherwise we pick a point earlier in the flow of code. A final CTX point is reg-
istered as soon as we detect a knee in the curve of the total number of L1-I cache misses.
We treat that CTX point as the beginning of the next code fragment, and measure the L1-I
misses from that CTX point up to the next candidate point. We repeat this procedure and
insert as many CTX calls as needed to keep the L1-I misses of the second thread (which

1. Intel Corporation. “IA-32 Intel® Architecture Software Developer's Manual, Volume
3: System Programming Guide.” (Order Number 253668).
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Figure 4. Context-switch (CTX) calls placed in Shore’s source code for index-
fetch. Arrows represent code paths, to be followed from left to right and from
top to bottom until a CTX is encountered. Note that the actual number of con-
text-switches can be larger than the number of CTX, since a CTX can be placed
inside a for loop (i.e., for each level of a B-tree).
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follows the first in lock-step) low, for the entire index-fetch call. We then continue this
search for the rest of the transactional operations.

The method of placing CTX calls described above does not depend on any assumptions
about the code behavior or the cache architecture. Rather, it dynamically inspects code
paths and chooses every code fragment to reside in the L1-I cache as long as possible
across a group of interested transactions. If a code path is self-conflicting (given the asso-
ciativity of the cache), then our method will place CTX calls around a code fragment that
may have a significantly smaller footprint than the cache size, but will have fewer conflict
misses when repeatedly executed. Likewise, this method also explicitly includes the con-
text-switching code itself when deciding switching points. Figure 4 shows the context-
switch calls (CTX) placed in index-fetch in Shore, using a machine with 64KB instruction
cache and 2-way set associativity. Note that, following this methodology, all threads exe-
cuting the same transactional operation always remain synchronized while context-switch-
ing back-and-forward, since they operate on similarly structured indexes. In Section 4, we
show how we handle threads that lose synchronization.

The rest of this section evaluates STEPS using microbenchmarks, whereas the com-
plete implementation for OLTP workloads is described in Section 4. In all experiments we
refer as “Original” to the original unmodified Shore code and as “STEPS” to our system
built on top of Shore.

3.4    STEPS in practice: microbenchmarks
We conduct experiments on the processors shown in Table 1. Most experiments (Section
3.4.1 - 3.4.3) run on the AthlonXP, which features a large, 64KB L1-I cache. The Pentium
4 implements a non-conventional instruction-cache architecture, called Trace Cache; we
provide background in Section 3.4.4. High-end installations typically run OLTP work-
loads on server processors (such as the ones shown in Figure 2b). In our work, however,
we are primarily interested in the number of L1-cache misses. From the hardware perspec-
tive, this metric depends on the L1-I cache characteristics: size, associativity, and block

Table 1: Processors used in microbenchmarks

CPU Cache characteristics

AMD
AthlonXP

L1 I + D cache size
associativity / block size

64KB + 64KB
2-way / 64 bytes

L2 cache size 256KB

Pentium III
L1 I + D cache size

associativity / block size
16KB + 16KB

4-way / 32 bytes

L2 cache size 256KB

Pentium 4

Trace Cache size
associativity

12K uops
8-way

L1-D cache size
associativity / block size

16KB
8-way / 64 bytes

L2 cache size 1MB

Simulated IA-32
(SIMFLEX)

L1 I + D cache size
associativity

[16, 32, 64KB]
[direct, 2, 4, 8, full]
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size (and not on clock frequency, or the L2 cache). Moreover, L1-I cache misses are mea-
sured accurately using processor counters, whereas time-related metrics (cycles, time
spent on a miss) can only be estimated and depend on the entire system configuration.
Instruction misses, however, translate directly to stall time since they cannot be over-
lapped with out-of-order execution.

Shore runs under Linux 2.4.20 (2.6 for the Pentium 4 experiments). We use PAPI
[Browne et al. 1999] and the perfctr library to access the AthlonXP, Pentium III, and
Pentium 4 counters. The results are based on running index-fetch on various tables con-
sisting of 25 int attributes and 100,000 rows each. The code footprint of index-fetch
without searching for the index itself (which is already loaded) is 45KB, as measured by a
cache simulator (described in Section 3.4.5). Repeatedly running index-fetch would incur
no additional misses in a 45K fully-associative cache, but it will incur conflict misses in
lower-associativity caches, as explained in Figure 1. We report results averaged over 10
threads, each running index-fetch 100 times.

3.4.1    Instruction misses and thread group size. We measure L1-I cache misses for
index-fetch, for various thread group sizes. Both the original system and Shore with
STEPS execute the fast CTX call, but STEPS multiplexes thread execution, while the
original system executes the threads serially. We first start with a cold cache and flush it
between successive index-fetch calls, and then repeat the experiment starting with a warm
cache. Figure 5 shows the results on the AthlonXP.

STEPS incurs only 33 misses for every additional thread, with both a cold and a warm
cache. Under the original system, each additional thread adds to the total exactly the same
number of misses: 985 for a cold cache (capacity misses) and 373 for a warm cache (all
conflict misses since the working set of index-fetch is 45KB). The numbers show that
Shore could potentially benefit from immediately repeating the execution of the same
operation across different threads. In practice, this does not happen because: (a) DBMS
threads suspend and resume execution at different places of the code (performing different
operations), and, (b) even if somehow two threads did synchronize, the regular context-
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Figure 5. Proof of concept: STEPS significantly reduces instruction-cache
misses as the group size of concurrent threads increases, both with cold and with
warm caches.
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switch code would itself conflict with the DBMS code. If the same thread, however, exe-
cutes the same operation immediately, it will enjoy a warm cache. For the rest of the
experiments we always warm up Shore with the same operation, and use the fast CTX
call, therefore reporting worst-case lower bounds.

The following brief analysis derives a formula for the L1-I cache miss reduction bounds
as a function of the thread group size (for similarly structured operations with no excep-
tional events). Suppose that executing an operation P once, with cold cache, yields 

misses. Executing P, N times, flushing the cache in-between, yields  misses. A

warm cache yields , misses because of fewer capacity misses. In

STEPS, all threads except the first incur  misses each, where . For a group

size of N, the total number of misses is . For an already warmed-up

cache this is: . When comparing STEPS to the original system, we

express the miss reduction percentage as: . There-
fore, the bounds for computing the L1-I cache miss reduction are:

For index-fetch, we measure , , giving a range of 82% - 87% of
overall reduction in L1-I cache misses for 10 threads, and 90% - 96% for 100 threads. For
the tuple update code in Shore, the corresponding parameters are:  and

.

The next microbenchmarks examine how the savings in L1-I cache misses translate into
execution time and how STEPS affects other performance metrics.

3.4.2    Speedup and level-one data cache misses. Keeping the same setup as before
and providing the original system with a warmed-up cache, we measure execution time in
CPU cycles and the number of level-one data (L1-D) cache misses on the AthlonXP. Fig-
ure 6a shows that STEPS speedup increases with the number of concurrent threads. We
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Improving Instruction Cache Performance in OLTP •  13

plot both STEPS performance with a CTX function that always updates floating point reg-

isters (float on) and with a function that skips updates. The speedup1 for 10 threads is 31%
while for a cold cache it is 40.7% (not shown).

While a larger group promotes instruction reuse it also increases the collective data
working set. Each thread operates on a set of private variables, buffer pool pages, and
metadata which form the thread’s data working set. Multiplexing thread execution at the
granularity STEPS does, results in a larger collective working set which can overwhelm
the L1-D cache (when compared to the original execution sequence). Figure 6b shows that
STEPS incurs increasingly more L1-D cache misses as the thread group size increases.
For up to four threads, however, the collective working set has comparable performance to
single-thread execution. Fortunately, L1-D cache misses have minimal effect on execution
time (as also seen by the speedup achieved). The reason is that L1-D cache misses that hit
in the L2 cache can be easily overlapped by out-of-order execution [Ailamaki et al. 1999].
Moreover, in the context of Simultaneous Multithreading (SMT), it has been shown that
for eight threads executing simultaneously an OLTP workload and sharing the CPU
caches, additional L1-D misses can be eliminated [Lo et al. 1998].

On the other hand, there is no real incentive in increasing the group size beyond 10-20
threads, as the upper limit in the reduction of L1-I cache misses is already 90-95%. Figure
7 plots the STEPS speedup (both with float on/off) and the percentage of L1-I cache
misses reduction for 2-80 concurrent threads. The reason that the speedup deteriorates for
groups larger than 10 threads is because of the AMD’s small, 256KB unified L2 cache. In

1. Throughout the paper we compute speedup as: . For example,
if the original time is 10 seconds and the improved one is 8 seconds, the speedup is
1.25 or 25%.
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Figure 7. Lower bounds for speedup using a warm cache for Shore (bottom
graph) and percentage of reduction in L1-I cache misses (top graph) of STEPS
over Shore, for 2-80 concurrent threads. The top line shows the maximum possi-
ble reduction.
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contrast to L1-D cache misses, L2-D misses cannot be overlapped by out-of-order execu-
tion. STEPS always splits large groups (discussed in Section 4) to avoid the speedup deg-
radation. In practice, we find that statically restricting the group size is sufficient to keep
the collective data working set in the L2 cache. Transactional operators are typically char-
acterized by long sequences of instruction streams that touch relatively few memory
addresses (when compared to DSS-style tuple-by-tuple processing algorithms) in the time
it takes to fill-up the L1-I cache with instructions. If we were to apply STEPS to an opera-
tor with a particularly large data working set (or to a CPU with a small effective L2 cache
size) then we would also need to implement a dynamic mechanism for restricting the
thread group size.

3.4.3    Increasing the size of context-switching code. Next, we examine the effect of
the context-switch code size on L1-I cache misses for STEPS, when keeping the CTX
points in the source code the same. In our implementation, the CTX code size is 76 bytes.

For this experiment, we pad the CTX function with a varying number of nops1 to achieve
CTX code sizes of up to 16KB. Figure 8 shows the total number of L1-I cache misses for
ten threads executing index-fetch, for various sizes of the CTX code (128B to 16KB). The
leftmost bar corresponds to our original STEPS implementation, while the rightmost bar
corresponds to the default Shore configuration with no STEPS, under a warmed-up cache.
This experiment shows that the CTX code could possibly include more functionality than
the bare-minimum and still provide a significant reduction in the number of instruction
cache misses. In our setup, a CTX function that is 25 times larger than the one we use,
would result in almost the same miss reduction (albeit with a lower overall speedup
improvement). Having this flexibility in the footprint of the CTX code is important for
portability of the STEPS implementation.

1. A nop is a special assembly instruction used for padding cache blocks; it provides no
other functionality.
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Figure 8. Number of L1-I cache misses for ten concurrent threads executing
index-fetch, varying the footprint of the context-switch code. The leftmost bar
corresponds to STEPS CTX code, the intermediate bars correspond to STEPS
CTX padded with consecutive nops, and the rightmost bar provides a compari-
son with the default number of L1-I cache misses with no STEPS, when the
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3.4.4    Detailed behavior on three different processors. The next experiment examines
changes in hardware behavior between STEPS and the original system for index-fetch
with 10 threads. We experiment with three processors: the AthlonXP, the Pentium III, and
the Pentium 4. The Pentium III features a smaller, 16KB L1-I and L1-D cache (see also
Table 1 for processor characteristics). Since the CTX points in Shore were chosen when
running on the AthlonXP (64KB L1-I cache), we expect that this version of STEPS on the
Pentium III will not be as effective in reducing L1-I cache misses as on the AMD. We
refrain from “re-training” STEPS on the Pentium III and the Pentium 4, so that we can
compare executables with the exact same instruction count (an optimized STEPS imple-
mentation for the Pentiums would include more CTX calls).

The Pentium 4 implements a non-conventional instruction cache architecture called
trace cache [Rotenberg et al. 1996]. A trace cache increases instruction fetch bandwidth
by storing traces of instructions that have already been fetched. A trace contains only
instructions whose results are actually used, and eliminates instructions following taken
branches (since they are not executed). This allows the instruction fetch unit of the proces-
sor to fetch several instruction sequences, without having to worry about branches in the
execution flow. The trace cache of Pentium 4 stores already decoded micro-operations
(which are translations of complex x86 instructions), so that the next time an instruction is
needed, it does not have to be decoded again.

The results are in Figure 9:
Execution time and L1-I cache misses. STEPS is also effective on the Pentium III

despite its small cache, reducing L1-I cache misses to a third (66% out of a maximum pos-
sible 90% reduction). Moreover, the speedup on the Pentium III is slightly higher than the
AthlonXP, mainly because the absolute number of misses saved is higher. The Pentium 4
exhibits a similar instruction-cache miss reduction to the AthlonXP (both in relative and
absolute number of misses) which means that the CTX calls used are as effective as in the
AthlonXP. The speedup is also similar, though we would expect a higher speed benefit for
the Pentium 4 since the L2 takes more cycles to access than in the AthlonXP (due to the
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Figure 9. Relative performance of Shore with and without STEPS, for index-
fetch with 10 concurrent threads, on the AthlonXP, the Pentium III and the Pen-
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higher clock frequency). It turns out, as we discuss below, that Pentium 4 exhibits worse
L1-D cache behavior than the AthlonXP, and furthermore, contrary to the AthlonXP, the
Pentium 4 does not reap any benefits from fewer mispredicted branches, since the trace
cache already exhibits good branch prediction.

Level-one data cache. STEPS incurs significantly more L1-D cache misses on the
Pentiums’ small L1-D cache (109% and 91% more misses for the Pentium III and Pentium
4 respectively). However, the CPU can cope well by overlapping misses (as exhibited by
the 24% speedup).

Mispredicted branches. STEPS reduces mispredicted branches to almost a third on
both the AthlonXP and the Pentium III (it eliminates 64% of the original system’s mispre-
dicted branches). This is an important result coming from STEPS’ ability to provide the
CPU with frequently repeating execution patterns. On the other hand, STEPS has no effect
on the Pentium 4’s branch prediction rate, since the trace cache already exhibits high
branch prediction accuracy.

Other events (not plotted). L2 cache performance does not have an effect on the spe-
cific microbenchmark since almost all data and instructions can be found there. We report
L2 cache performance in the next section, when running a full OLTP workload. Also, as
expected, STEPS executes slightly more instructions (1.7%) and branches (1.3%) due to
the extra context-switch code.

3.4.5    Varying L1-I cache characteristics. The last microbenchmark varies L1-I cache
characteristics using SIMFLEX [Hardavellas et al. 2004], a Simics-based [Magnusson et al.
2002], full-system simulation framework developed at the Computer Architecture Lab of
Carnegie Mellon. We use Simics/SIMFLEX to emulate a x86 processor (Pentium III) and
associated peripheral devices (using the same setup as in the real Pentium). Simics boots
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and runs the exact same binary code of Linux and the Shore/STEPS microbenchmark, as
in the real machines. Using SIMFLEX’s cache component we modify the L1-I cache char-
acteristics (size, associativity, block size) and run the 10-thread index-fetch benchmark.
The reported L1-I cache misses are the same as in a real machine with the same cache
characteristics. Metrics in simulation involving timing are subject to assumptions made by
programmers and cannot possibly match real execution times. Figures 10 (a), (b), and (c)
show the results for a fixed 64-byte cache block size, varying associativity for a 16KB,
32KB, and 64KB L1-I cache.

As expected, increasing the associativity reduces instruction conflict misses (except for
a slight increase for fully-associative 16KB and 32KB caches, due to the LRU replace-
ment policy resulting in more capacity misses). The conflict miss reduction for STEPS is
more dramatic in a small cache (16KB). The reason is that with a 45KB working set for
index-fetch even a few CTX calls can eliminate all capacity misses for the small caches.
Since STEPS is trained on a 2-way 64KB cache, smaller caches with the same associativ-
ity incur more conflict misses. As the associativity increases those additional L1-I misses
disappear. Despite a fixed training on a large cache, STEPS performs very well across a
wide range of cache architectures, achieving a 89% overall reduction in L1-I misses — out
of 90% max possible — for the 8-way 32KB and 64KB caches. Experiments with differ-
ent cache block sizes (not shown here) find that larger blocks further reduce L1-I misses,
in agreement with the results in [Ranganathan et al. 1998].

4.    APPLYING STEPS TO OLTP WORKLOADS

So far we saw how to efficiently multiplex the execution of concurrent threads running the
same transactional DBMS operation when (a) those threads are already synchronized, (b)
the threads run uninterrupted, and (c) the DBMS does not schedule any other threads. This
section removes all previous assumptions and describes how STEPS works in full-system
operation. The design goal is to take advantage of the fast CTX calls while maintaining
high concurrency for similarly structured DBMS operations, for arbitrary transactions and
arrival sequences, in the presence of locking, latching (which provides exclusive access to
DBMS structures), disk I/O, aborts and roll-backs, and other concurrent system operations
(e.g., deadlock detection, buffer pool page flushing). The rest of this section describes the
full STEPS implementation (Section 4.1), presents the experimentation setup (4.2) and the
TPC-C results (4.3).

4.1    Full STEPS implementation
STEPS employs a two-level transaction synchronization mechanism. At the higher level,
all transactions about to perform a single DBMS operation form execution teams. We call
S-threads all threads participating in an execution team (excluding system-specific threads
and processes/threads which are blocked for any reason). Once a team is formed, the CPU
proceeds with the lower-level transaction synchronization scheme within a single team,
following a similar execution schedule as in the previous section. Next, we detail synchro-
nization mechanisms (Section 4.1.1), different code paths (Section 4.1.2), and threads
leaving their teams (Section 4.1.3). Section 4.1.4 summarizes the changes to Shore code.
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4.1.1    Forming and scheduling execution teams. To facilitate a flexible assignment of
threads to execution teams and construct an efficient CPU schedule during the per-team
synchronization phase, each DBMS operation is associated with a double-linked list (Fig-
ure 11). S-threads are part of such a list (depending on which operation they are currently
executing), while all other threads have the prev and next pointers set to zero. The list
for each execution team guides the CPU scheduling decisions. At each CTX point the
CPU simply switches to the next thread in the list. S-threads may leave a team (discon-
nect) for several reasons. Transactions give up (yield) the CPU when they (a) block trying
to acquire an exclusive lock (or access an exclusive resource), or on an I/O request, and,
(b) when they voluntarily yield control as part of the code logic. We call stray the threads
that leave a team.

The code responsible for team formation is a thin wrapper that runs every time a trans-
action finishes a single DBMS operation (“STEPS wrapper” in Figure 11). It disconnects
the S-thread from the current list (if not stray) and connects it to the next list, according to
the transaction code logic. If a list reaches the maximum number of threads allowed for a
team (a user-defined variable), then the transaction will join a new team after the current
team finishes execution. Before choosing the next team to run, all stray threads are given a
chance to join their respective teams (next DBMS operation on their associated transac-
tion’s code logic). Finally, the STEPS wrapper updates internal statistics, checks with the

system scheduler if other tasks need to run, and picks the next team to run1.
Within each execution team STEPS works in a “best-effort” mode. Every time a trans-

action (or any thread) encounters a CTX point in the code, it first checks if it is an S-thread

1. Different per-team scheduling policies may apply at this point. In our experiments,
picking the next operation that the last member of a list (or the last stray thread) is
interested, worked well in practice since the system scheduler makes sure that every
thread makes progress.
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Figure 11. Additions to the DBMS code: Threads are associated with list nodes
and form per-operation lists, during the STEPS setup code at the end of each
DBMS operation.
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and then passes the CPU to the next thread in the list. All S-threads in the list eventually
complete the current DBMS operation, executing in a round-robin fashion, the same way
as in Section 3. This approach does not explicitly provide any guarantees that all threads
will remain synchronized for the duration of the DBMS operation. It provides, however, a
very fast context-switching mechanism during full-system operation (the same list-based
mechanism was used in all microbenchmarks). If all threads execute the same code path
without blocking, then STEPS will achieve the same L1-I cache miss reduction as in the
previous section. Significantly different code paths across transactions executing the same
operation or exceptional events that cause threads to become stray may lead to reduced
benefits in the L1-I cache performance. Fortunately, we can reduce the effect of different
code paths (Section 4.1.2) and exceptional events (4.1.3).

4.1.2    Maximizing code overlap across transactions. If an S-thread follows a signifi-
cantly different code path than other threads in its team (e.g., traverse a B-tree with fewer
levels), the assumed synchronization breaks down. That thread will keep evicting useful
instructions with code that no one else needs. If a thread, however, exits the current opera-
tion prematurely (e.g., a key was not found), the only effect will be a reduced team size,
since the thread will wait to join another team. To minimize the effect of different code
paths we follow the next two guidelines:

1. Have a separate list for each operation that manipulates a different index (i.e., index
fetch (table1), index fetch (table2), and so on).

2. If the workload does not yield high concurrency for similarly structured operations,
we consider defining finer-grain operations. For example, instead of an insert operation,
we maintain a different list for creating a record and a different one for updating an index.

Table 2 shows all transactional operations along with their degree of cross-transaction
overlapped code. Begin, commit, scan, and update are independent of the database struc-
ture and use a single list each. Index fetch code follows different branches depending on
the B-tree depth, therefore a separate list per index maximizes code overlap. Lastly, insert
and delete code paths may differ across transactions even for same indices, therefore it
may be necessary to define finer-grain operations. While experimenting with TPC-C we
find that following only the first guideline (declaring lists per index) is sufficient. Small
variations in the code path are unavoidable (e.g., utilizing a different attribute set or

Table 2: Operation classification for overlapped code

DBMS 
operation

cross-transaction code overlap

always same tables same tables 
+ split Op

begin / commit

fetch

insert

delete

update

scan
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manipulating different strings) but the main function calls to the DBMS engine are gener-
ally the same across different transactions. For workloads with an excessive number of
indices, we can use statistics collected by STEPS on the average execution team size per
index, and consolidate teams from different indices. This way STEPS trades code overlap
for an increased team size.

4.1.3    Dealing with stray transactions. S-threads turn into stray when they block or
voluntarily yield the CPU. In preemptive thread packages the CPU scheduler may also
preempt a thread after its time quantum has elapsed. The latter is a rare event for STEPS
since it performs switches at orders of magnitude faster times than the quantum length. In
our implementation on Shore we modify the thread package and intercept the entrance of
block and yield to perform the following actions:

1. Disconnect the S-thread from the current list.
2. Turn the thread into stray, by setting pointers prev and next to zero. Stray threads

bypass subsequent CTX calls and fall under the authority of the regular scheduler. They
remain stray until they join the next list.

3. Update all thread package structures that were not updated during the fast CTX calls.
In Shore these are the current running thread, and the ready queue status.

4. Pass a hint to the regular scheduler that the next thread to run should be the next in
the current list (unless a system or a higher priority thread needs to run first).

5. Give up the CPU using regular context-switching.
Except for I/O requests and non-granted locks, transactions may go astray because of

mutually exclusive code paths. Frequently, a database programmer protects accesses or
modifications to a shared data structure by using a mutex (or a latch). If an S-thread calls
CTX while still holding the mutex, all other threads in the same team will go astray as they
will not be able to access the protected data. If the current operation’s remaining code
(after the mutex release) can still be shared, it may be preferable to skip the badly placed
CTX call. This way STEPS only suffers momentarily the extra misses associated with
executing a small, self-evicting piece of code.

Erasing CTX calls is not a good idea since the specific CTX call may also be accessed
from different code paths (for example, through other operations) which do not necessar-
ily go through acquiring a mutex. STEPS associates with every thread a counter that
increases every time the thread acquires a mutex and decreases when releasing it. Each
CTX call tests if the counter is non-zero in which case it lets the current thread continue
running without giving up the CPU. In Shore, there were only two places in the code that
the counter would be non-zero.

4.1.4    Summary of changes to the DBMS code. The list of additions and modifications
to the Shore code base is the following. We added the wrapper code to synchronize threads
between calls to DBMS operations (STEPS wrapper, 150 lines of C++), the code to per-
form fast context-switching (20 lines of inline assembly), and we also added global vari-
ables for the list pointers representing each DBMS operation. We modified the thread
package code to update the list nodes properly and thread status whenever blocking, yield-
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ing, or changing thread priorities (added/changed 140 lines of code). Finally, we inserted
calls to our custom CTX function into the source code (as those were found during the
microbenchmarking phase). Next, we describe the experimentation testbed.

4.2    Experimentation setup
We experiment with TPC-C, the most widely accepted transactional benchmark, which
models a wholesale parts supplier operating out of a number of warehouses and their asso-

ciated sales districts1. The benchmark is designed to represent any industry that must man-
age, sell, or distribute a product or service. It is designed to scale just as the supplier
expands and new warehouses are created. The scaling requirement is that each warehouse
must supply ten sales districts, and each district serves three thousand customers. The
database schema along with the scaling requirements (as a function of the number of
warehouses W) is shown in Figure 12 (left part).

The database size for one warehouse is 100MB (10 warehouses correspond to 1GB and
so on). TPC-C involves a mix of five concurrent transactions of different types and com-
plexity. These transactions include entering orders (the New Order transaction), recording
payments (Payment), delivering orders, checking the status of orders, and monitoring the
level of stock at the warehouses. The first two transactions are the most frequently exe-
cuted (88% of any newly submitted transaction), and their code outline (in terms of calls
to the DBMS in our implementation of TPC-C on top of Shore) is shown in Figure 12.

The TPC-C toolkit for Shore is written at CMU. Table 3 shows the basic configuration
characteristics of our system. To ensure high concurrency and reduce the I/O bottleneck in
our two-disk system we cache the database in the buffer pool and allow transactions to
commit without waiting for the log to be flushed on disk (the log is flushed asynchro-
nously). A reduced buffer pool size would cause I/O contention allowing only very few
threads to be runnable at any time. High-end installations can hide the I/O latency by par-
allelizing requests on multiple disks. To mimic a high-end system’s CPU utilization, we

1. Transaction Processing Performance Council. http://www.tpc.org

NEW ORDER
begin
fetch (D) lock
fetch (W)
fetch (C)
update (D)
for (avg 10)
.....fetch (I)
.....fetch (S) lock
.....update (S)
.....insert (O-L)
insert (O)
insert (N-O)
commit

PAYMENT
begin
fetch (D) lock
fetch (W) lock
scan (C) 60% prob.
fetch (C) lock
fetch (C) lock, 10% prob.
update (C)
update (D)
update (W)
insert (H)
commit

Figure 12. Database schema for TPC-C benchmark and code outline (in terms
of system calls to the DBMS) of the two most frequently executed transactions,
New Order and Payment (capital letters correspond to TPC-C tables, “fetch”
and “scan” are implemented through SQL SELECT statements that retrieve a
single or multiple records correspondingly.
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set user thinking time to zero and keep the standard TPC-C scaling factor (10 users per
Warehouse), essentially having as many concurrent threads as the number of users. We
found that, when comparing STEPS with Shore running New Order, STEPS was more
efficient in inserting multiple subsequent records on behalf of a transaction (because of a
slot allocation mechanism that was avoiding overheads when inserts were spread across
many transactions). We modified slightly New Order by removing one insert from inside a
for-loop (but kept the remaining inserts).

For all experiments we warm up the buffer pool and measure CPU events in full-system
operation, including background I/O processes that are not optimized using STEPS. Mea-
surement periods range from 10 seconds to one minute depending on the time needed to
complete a pre-specified number of transactions. All reported numbers are consistent
across different runs, since the aggregation period is large in terms of CPU time. Our pri-
mary metric is the number of L1-I cache misses as it is not affected by the AthlonXP’s
small L2 cache (when compared to server processors shown in Figure 2b).

STEPS setup: We keep the same CTX calls used in the microbenchmarks but without
using floating point optimizations, and without re-training STEPS on TPC-C indexes or
tables. Furthermore, we refrain from using STEPS on the TPC-C application code. Our
goal is to show that STEPS is workload-independent and report lower bounds for perfor-
mance metrics by not using optimized CTX calls. We assign a separate thread list to each
index fetch, insert, and delete operating on different tables while keeping one list for each
of the rest operations. Restricting execution team sizes has no effect since in our configu-
ration the number of runnable threads is low. For larger setups, STEPS can be configured
to restrict team sizes, essentially creating multiple independent teams per DBMS opera-
tion.

4.3    TPC-C results
Initially we run all TPC-C transaction types by themselves varying the database size (and
number of users). Figure 13 shows the relative performance of STEPS over Shore when
running the Payment transaction with standard TPC-C scaling for 10, 20, and 30 ware-
houses. The measured events are: execution time in CPU cycles, cache misses for both L1
and L2 caches, the number of instructions executed, and the number of mispredicted
branches. Results for other transaction types were similar. STEPS outperforms the original
system, achieving a 60-65% reduction in L1-I cache misses, a 41-45% reduction in
mispredicted branches, and a 16-39% speedup (with no floating point optimizations). The
benefits increase as the database size (and number of users) scale up. The increase in L1-D

Table 3: System configuration

CPU AthlonXP, 2GB RAM, Linux 2.4.20

Storage one 120GB main disk, one 30GB log disk

Buffer pool size Up to 2GB

Page size 8192 Bytes

Shore locking hierarchy Record, page, table, entire database

Shore locking protocol Two phase locking
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cache misses is marginal. STEPS speedup is also fueled by fewer L2-I and L2-D misses as
the database size increases. STEPS makes better utilization of AMD’s small L2 cache as
fewer L1-I cache misses also translate into more usable space in L2 for data.

Table 4 shows for each configuration (10, 20, and 30 warehouses running Payment)
how many threads on average enter an execution team for a DBMS operation and exit
without being stray, along with how many threads are ready to run at any time and the
average team size. The single capital letters in every operation correspond to the TPC-C
tables/indices used (Customer, District, Warehouse, and History). STEPS is able to group
on average half of the available threads. Most of the operations yield a low rate for pro-
ducing strays, except for index fetch on District and Warehouse. In small TPC-C configu-
rations, exclusive locks on those tables restrict concurrency.

Next, we run the standard TPC-C mix, excluding the non-interactive Delivery transac-
tion (TPC-C specifies up to 80sec queueing delay before executing Delivery). Figure 14
shows that the four-transaction mix follows the general behavior of the Payment mix, with
the reduction in instruction cache misses (both L1 and L2) being slightly worse. Statistics
for the team sizes reveal that this configuration forces a smaller average team size due to
the increased number of unique operations. For the 10-warehouse configuration, there are
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Figure 13.  Transaction mix includes only the Payment transaction, for 10-30
Warehouses (100-300 threads).
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Table 4: Team sizes per DBMS operation in Payment

Warehouses 10 20 30

Operation (table) in out in out in out

index fetch (C) 8.6 8.6 16 16 25.2 24.7

index fetch (D) 8.9 1.7 16.2 2.6 31.7 5.3

index fetch (W) 8.9 0.5 16.6 1 30 1.9

scan (C) 9.4 8.2 16 14.3 26.2 23.7

insert (H) 7.9 7.8 14.9 14.6 24 23.2

update (C, D, W) 7.5 7.2 14 12.3 21.6 19

average team size 8.6 6.9 15.9 12.3 26.4 20.4

# of ready threads 15 28 48.4
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14 ready threads, and on average, 4.3 threads exit from a list without being stray. Still, this
means a theoretical bound of a 77% reduction in L1-I cache misses, and STEPS achieves a
56% reduction while handling a full TPC-C workload and without being optimized for it
specifically. Results for different mixes of TPC-C transactions were similar.

5.    APPLICABILITY TO COMMERCIAL DBMS
STEPS has the following two attractive features that simplify integration in a commercial
DBMS: (a) it applies incrementally since it can target specific calls to the DBMS and also
can co-exist with other workloads which do not require a STEPS runtime, (e.g., decision
support applications simply bypass all CTX calls), and (b) the required code modifications
are restricted to a very specific small subset of the code, the thread package. Most com-
mercial thread packages implement preemptive threads. As a result, DBMS code is thread
safe: programmers develop DBMS code anticipating random context-switches that can
occur at any time. Thread safe code ensures that any placement of CTX calls throughout
the code will not break any assumptions.

To apply STEPS to a thread-based DBMS the programming team first needs to aug-
ment the thread package to support fast context-switching. Database software using pro-
cesses instead of threads may require changes to a larger subset of the underlying OS
code. For the rest of this section, we target DBMS software that assigns transactions to
threads (and not processes). In general, a STEPS fast CTX call needs to bypass the operat-
ing system’s scheduler and update only the absolute minimum state needed by a different
thread to resume execution. Whenever a thread gives up CPU control through a mecha-
nism different than fast CTX (e.g., disk I/O, unsuccessful lock requests, failure to enter a
critical section, or expired time quantum), all state needed before invoking a regular con-
text-switch needs to be updated accordingly. This is the state that the OS scheduler needs
to make scheduling decisions. The next phase is to add a STEP wrapper in each major
DBMS transactional operation. This thin wrapper will provide the high-level, per-opera-
tion transaction synchronization mechanism used in STEPS. The only workload-specific
tuning required is the creation of per-index execution teams, which can be done once the
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Figure 14. Transaction mix includes all transactions except the non-interactive
Delivery transaction, for 10-20 Warehouses.
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database schema is known. The previous two sections described our approach into imple-
menting the above mentioned guidelines in Shore running on Linux. The implementation
does not depend on the core DBMS source code, since it only affects the thread package
and the entry (or exit) points of a few high-level functions.

The final phase in applying STEPS is to decide how many fast CTX calls to insert in the
DBMS code and where exactly to place them. So far, we identified candidate insertion
points by “test-and-try.” We performed a manual search by executing DBMS operations
on the target hardware, using the CPU performance counters to count instruction-cache
misses. In our implementation, we could afford the time to perform a manual search since
Shore’s code is relatively small (around 60,000 lines of code). Commercial systems, how-
ever, may contain tens of millions of code lines. To aid STEPS deployment in large-scale
DBMS software we need a tool that can automatically decide on where to insert CTX calls
throughout the source code. Moreover, such a tool should be versatile enough to produce
different outputs for different targeted cache architectures. This way, a DBMS binary with
STEPS could ship optimized for a specific CPU.

In the remaining of this section we describe autoSTEPS, our approach towards auto-
mating the deployment of STEPS in commercial DBMS. Section 5.1 presents the func-
tionality and usage of the tool, Section 5.2 describes the implementation, while Section
5.3 evaluates the accuracy of autoSTEPS.

5.1    autoSTEPS: a tool to generate CTX insertion points
We leverage existing open-source software to obtain a trace of all instruction references

during the execution of a transactional operation. Valgrind1 / cachegrind2 is a cache profil-
ing tool which tracks all memory references (both data and instruction) from a binary exe-
cutable and passes them through a cache simulator to report statistics. We modify
cachegrind to output all memory addresses of instructions executed between two “magic”
instructions, placed anywhere in the DBMS source code (or user application code).
autoSTEPS is a cache-simulator script, written in Python, that takes as input the memory
address trace and outputs the source code lines where fast CTX calls should be placed for
STEPS-like execution. The tool usage is the following:

• First, the user specifies the DBMS operation for processing (such as index-fetch,
insert, update, or any desired function call), by creating a sample client application
which contains the operation to be profiled.

• If the targeted platform is the same as the one used to run the tool, no further action is
needed (the tool automatically extracts cache parameters and outputs them for verifi-
cation). Otherwise, the user needs to specify the cache characteristics (L1-I cache
size, associativity, and block size) using a switch.

• The user first executes the modified version of valgrind to obtain the trace (i.e.,
“>steps_valgrind sample_transaction.exe > trace”), and then runs
autoSTEPS on the collected trace.

1.http://valgrind.org/
2.http://valgrind.org/docs/manual/cg_main.html
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• The tool outputs the memory addresses of the code that CTX calls need to be inserted,
along with various cache statistics, both for plain and STEPS execution. Note that,
depending on the underlying cache architecture, the tool may output different
addresses for the CTX calls.

A specific DBMS operation can be profiled for STEPS by compiling a client applica-
tion that issues sample transactions to a set of tables in the database. If the targeted opera-
tion is a function call exported by the DBMS to the client application, then the user inserts
a “magic” instruction right before and right after the function call to the DBMS, and re-
compiles the client application. If the function call to be profiled is an internal one, then
the magic instruction should be inserted at the DBMS source code. The magic instruction
is a unique sequence of native assembly instructions with no effect, that differs on each
platform and comes with the tool documentation; its purpose is to instruct the tool to start
and stop processing the binary.

To translate the memory addresses to source code line numbers, autoSTEPS invokes
the system debugger in batch mode and outputs source file names and line numbers. Once
the lines in the source code are known, the user simply inserts CTX calls in place (the code
of the CTX call is always the same). Then, the user re-compiles and runs the transactional
application. Note that this procedure does not guarantee a deadlock-free execution since it
may have introduced potential races. In our experiments with Shore, this was not the case,
but it may occur in other systems. The autoSTEPS tool is an aiding tool in the process of
instrumenting code, not a complete binary solution. We envision that a commercial appli-
cation would also include two more tools. The first is a binary modification tool, similar to
[Srivastava and Eustace 1994], to insert the CTX calls directly to the DBMS binary with
no need for recompiling. The second tool is a race-detection binary tool, similar to [Sav-
age et al. 1997], to pinpoint badly placed CTX calls which may cause races or force S-
threads to go astray. Since similar tools already exist, it is out of the scope of this work to
re-implement such functionality. Next, we describe the implementation of autoSTEPS.

5.2    autoSTEPS algorithm
To profile code for STEPS we only need to examine L1-I cache traffic. We re-implement
the cache simulator of cachegrind, to compare with STEPS-like execution. To find points
in the code to place fast CTX calls, we need to consider cache misses only for non-lead-

ing1 threads in an execution team. A regular cache simulator will count all misses for the
single executing thread. Under STEPS, these are the default, compulsory misses that will
always be caused by the leading thread. Since STEPS performance is governed by the
misses caused by non-leading threads, we need to track which cache blocks are evicted
during execution of a code segment by the leading thread. Those evicted cache blocks will
need to be reloaded when non-leading threads execute the same code segment (immedi-
ately after the next CTX call). This way, we can decide on where to place CTX calls and

1. A leading thread in an execution team is the first thread to execute (and therefore load
in the cache) a new code segment, enclosed by two consecutive CTX calls. Non-lead-
ing threads are the rest n-1 threads in the execution team that will execute the same
code segment and will incur significantly fewer misses.
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also compute overall misses for all threads in the execution team, by processing a trace of
only one thread executing the entire transactional operation.

Our algorithm works on top of the regular L1-I cache simulation. Starting from the
beginning of the trace, the autoSTEPS simulator marks each cache block accessed with
the number of the current code segment. These are the cache blocks loaded by the leading
thread and, initially, the segment number is 0. The algorithm does not take into consider-
ation regular misses. However, whenever a cache block with the same segment number as
the currently executed segment is evicted, we count it as a STEPS miss. A STEPS miss is a
miss that would have been caused by a non-leading thread. When the number of STEPS
misses reaches a threshold, we mark the current memory address as the place where a
CTX call will be inserted, increase the code segment number, reset the number of STEPS
misses, and continue processing the trace.

To better match CTX call selection with code behavior, instead of using a fixed thresh-
old for STEPS misses, we place CTX calls close to the beginning of a “knee” in the order
that misses occur. Such a knee appears when (a) STEPS misses occur close to each other
in terms of executed instructions (the number of in-between instructions is the width of the
knee), and, (b) when the number of consecutive misses that are spaced out by fewer
instructions than the knee width, reaches a predefined threshold (the “height” of a knee).
Whenever two consecutive STEPS misses are separated by more than the knee width, we
reset the knee height counter, up to a maximum of twice the knee height for STEPS misses
between two consecutive CTX calls. The input to autoSTEPS is the width of the knee (as
a number of instructions) and the height of the knee (as a number of STEPS misses). Upon
detection of a knee, the CTX call is placed before the instruction that marks the beginning
of the knee. For the code segment following the newly placed CTX call, we can afford
more evictions before one results into a STEPS miss (since it is a new segment for all team
threads), effectively “absorbing” the knee in the misses altogether.
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To test autoSTEPS we collect a trace of instructions executed during index-fetch,
using the same setup as in Section 3. We run autoSTEPS with a knee of width 200
instructions and height 4 misses and compare the number of misses for a single thread
(non-leading thread when in STEPS mode) for the original code and STEPS execution.
Figure 15 shows the cumulative number of misses as those add up for every executed
instruction (the number of executed instructions at any time is in on the x-axis). The top
line corresponds to the L1-I cache misses of the original code, when the cache is warmed
up with the exact same operation, as computed by the cache simulator of cachegrind. The
bottom line corresponds to STEPS misses (misses caused by non-leading threads), while
the vertical lines show where a CTX call takes place. In this run, autoSTEPS outputs 3
insertion points for CTX code which results into a total of 7 CTX calls. As Figure 15
shows, the resulting configuration keeps the overall number of misses very low with only
3 CTX insertion points in the source code. Note that during manual tuning, a total of 16
CTX insertion points was used.

To examine the effect of varying the knee input parameters to autoSTEPS, Figure 16
plots the number of L1-I cache misses (y-axis) against the number of CTX calls executed
(x-axis) for various inputs. The observed trend is an expected one: as the height of the
knee is reduced, autoSTEPS results into more recommendations for CTX calls which
bring the overall number of misses lower. For the same height, a wider knee essentially
allows more flexibility in defining a knee, absorbing more misses. Note that these are only
trends that do not always hold, since autoSTEPS does not try to minimize the actual
number of CTX calls executed. A CTX insertion point is picked according to the miss
behavior up to that point, and not according to how many total calls it will generate. Fig-
ure 16 also shows the performance of the manually configured STEPS system used in the
previous sections. The number of CTX calls in the manually tuned system exceed those
resulting from autoSTEPS recommendations. Note that the cache simulation reports
fewer misses for both the original and STEPS execution when compared to the simulation
results of Section 3.4.5, because of the simplicity of the simulator (e.g., it does not simu-
late prefetching and assumes a perfect LRU replacement policy) and because we are
assuming a perfectly warmed-up cache with no pollution from context-switching code.
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5.3    Evaluation
To evaluate the effectiveness of the recommendations produced by autoSTEPS, we pick
the same input parameters as in Figure 15 (knee width 200 and height 4). autoSTEPS
outputs the line number and source file of three places in Shore’s code to insert fast CTX
calls. Since the recommendations from Figure 16 refer to arbitrary source lines, and those
lines can be inside header files or shared library code, it is not always straightforward to
manually insert a CTX call without a binary modification tool, or without adjusting the
placement of the call. For the configuration used in this section (200, 4), we were able to
recompile the code by simply inserting a CTX call in the output lines of the autoSTEPS
tool, but as the number of CTX calls increases for other configurations it becomes neces-
sary to inspect the source code and make appropriate placement adjustments.

After inserting the CTX calls and recompiling the code, we run the index-fetch
microbenchmark with 10 threads on AthlonXP. We compare three systems: the original
Shore, Shore with STEPS using the manual search for CTX insertion points (which
resulted in a total of 16 insertions), and Shore with STEPS using the three insertion points
recommended by autoSTEPS. We expect that the specific autoSTEPS configuration
will not outperform the manual one in reducing the number of misses, as shown in the
simulation results of Figure 16, but the reduced number of CTX calls should give a rela-
tive speedup benefit to the autoSTEPS configuration. The results are in Figure 17. The
left part of the figure shows the total number of L1-I cache misses for all 10 threads exe-
cuting index-fetch, for the three systems. As expected, the autoSTEPS configuration sig-
nificantly outperforms the original system and is slightly worse than the manual
configuration. The right part of Figure 17 shows the total execution cycles. The
autoSTEPS configuration performs almost as well as the manual configuration since it
executes fewer context-switches.

6.    CONCLUSION

This article described STEPS, a transaction coordinating mechanism that addresses the
instruction-cache bottleneck in OLTP workloads. As recent studies have shown, instruc-
tion-cache misses in transaction processing account for up to 40% of the execution time.
Although compiling techniques and recently proposed architectural features can partially
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alleviate the problem, the database software design itself holds the key for eliminating
cache misses by targeting directly the root of the problem. While database researchers
have demonstrated the effectiveness of cache-conscious algorithms and data structures on
data cache misses, instruction cache performance in transaction processing has yet to be
addressed from within the software. The size of the code involved in transaction process-
ing and the unpredictable nature of transaction execution make a software approach to
eliminate instruction-cache misses a challenging one.

STEPS is a mechanism that can apply with few code changes to any database software
and shape the thread execution sequence to improve temporal locality in the instruction
cache. To achieve this, STEPS first forms teams of threads executing the same system
component. It then multiplexes thread execution within a team, at such fine granularity
that it enables reuse of instructions in the cache across threads. To the best of our knowl-
edge, STEPS is the first software approach to provide explicit thread scheduling for
improving instruction cache performance. STEPS is orthogonal to compiler techniques
and its benefits are always additional to any binary-optimized configuration. This article
shows that STEPS minimizes both capacity and conflict instruction cache misses of OLTP
with arbitrary long code paths, without increasing the size or the associativity of the
instruction cache.

We expect the ideas behind STEPS to become even more relevant and applicable to the
upcoming generation of multicore and multithreaded chips. Researchers tend to agree that
server software will require fundamental changes to take advantage of the abundant on-
chip processing elements in the most efficient way. With STEPS, we show how a small,
well-targeted set of changes can affect the entire code base of a DBMS and significantly
improve instruction-cache performance in transaction processing workloads. In a multi-
core environment, an additional layer of core-aware scheduling will be needed to route
similarly structured operations to the same core. For multithreaded (SMT) cores, we can
further increase performance by mapping team threads to hardware threads. In that case,
we would also need to replace the fast context-switch calls with simple synchronization
barriers to make sure that all threads remain synchronized. Another possible extension, on
the hardware front, would be to implement autoSTEPS on hardware and let the hardware
make calls to the fast context-switch function. As instruction caches do not grow in size
we expect related research efforts to remain active in the near future.
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